設(shè)橢圓
:
,拋物線
:
.
(1) 若
經(jīng)過
的兩個焦點,求
的離心率;
(2) 設(shè)
,又
為
與
不在
軸上的兩個交點,若
的垂心為
,且
的重心在
上,求橢圓
和拋物線
的方程.
解:(1)因為拋物線
經(jīng)過橢圓
的兩個焦點
,可得:
,
由
得橢圓
的離心率
.
(2)由題設(shè)可知
關(guān)于
軸對稱,設(shè)
,
則由
的垂心為
,有
,
所以
①
由于點
在
上,故有
②
②式代入①式并化簡得:
,解得
或
(舍去),
所以
,故
,
所以
的重心為
,
因為重心在
上得:
,所以
,
,
又因為
在
上,所以
,得
.
所以橢圓
的方程為:
,
拋物線
的方程為:
.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題滿分12分)
設(shè)橢圓
的兩個焦點是
,且橢圓上存在點M,使
(1)求實數(shù)m的取值范圍;
(2)若直線
與橢圓存在一個公共點E,使得|EF
|+|EF
|取得最小值,求此最小值及此時橢圓的方程;
(3)在條件(2)下的橢圓方程,是否存在斜率為
的直線
,與橢圓交于不同的兩A,B,滿足
,且使得過點
兩點的直線NQ滿足
=0?若存在,求出k的取值范圍;若不存在,說明理由
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
設(shè)
分別是橢圓
的左、右焦點,過
斜率為1的直線
與
相交于
兩點,且
成等差數(shù)列。
(1)求
的離心率;
(2)設(shè)點
滿足
,求
的方程
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題滿分14分)已知直角坐標(biāo)平面內(nèi)點
到點
與點
的距離之和為
(Ⅰ)試求點
的軌跡
的方程;
(Ⅱ)若斜率為
的直線
與軌跡
交于
、
兩點,點
為軌跡
上一點,記直線
的斜率為
,直線
的斜率為
,試問:
是否為定值?請證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
直線
兩點,則以A為焦點,經(jīng)過B點的橢圓的標(biāo)準(zhǔn)方程是
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知橢圓
的左右焦點分別為
,
是以點
為圓心(
為坐標(biāo)原點),以
為半徑的圓與橢圓在第二、三象限的兩個交點,且
為等邊三角形,則橢圓的離心率
的值是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
橢圓
的焦點F
1 、F
2,P為橢圓上的一點,已知
,則
的面積為_____________________。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
我們把由半橢圓
合成的曲線稱作“果圓”(其中
)。如圖,設(shè)點
是相應(yīng)橢圓的焦點,A
1、A
2和B
1、B
2是“果圓”與
x,
y軸的交點,若△F
0F
1F
2是邊長為1的等邊三角形,則
a,
b的值分別為 ( )
A. | B. | C.5,3 | D.5,4 |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知動點P(x,y)在橢圓
上,若F(3,0),
,且M為PF中點,則
=_____.
查看答案和解析>>