(1)求證:Cn-1m+Cn-1m-2+2Cn-1m-1=Cn+1m
(2)設(shè)(1-
2
x)2004=a0+a1x+a2x2+…+a2004x2004,其中,a0,a1,a2,…,a2004是常數(shù),求:(a0+a2+a4+…+a20042-(a1+a3+a5+…+a20032的值.
分析:(1)利用組合數(shù)的性質(zhì):Cnm+Cnm-1=Cn+1m得到Cn-1m+Cn-1m-2+2Cn-1m-1=(Cn-1m+Cn-1m-1)+(Cn-1m-1+Cn-1m-2得證.
(2)將(a0+a2+a4+…+a20042-(a1+a3+a5+…+a20032的利用平方差公式展開(kāi),令(1-
2
x)2004=a0+a1x+a2x2+…+a2004x2004的x分別取1,-1,代入上式,求出待求的值.
解答:解:(1)證明:Cn-1m+Cn-1m-2+2Cn-1m-1=(Cn-1m+Cn-1m-1)+(Cn-1m-1+Cn-1m-2)=Cnm+Cnm-1=Cn+1m
所以Cn-1m+Cn-1m-2+2Cn-1m-1=Cn+1m;
(2)令x=1,則有(1-
2
)2004=a0+a1+a2+…+a2004
,
令x=-1則有(1+
2
)2004=a0-a 1+a2-a3+…+(-1)2004a2004
,
(a0+a2+…+a2004)2-(a1+a3+…+a2003)2

=(a0+a1+a2+…+a2004)(a0-a1+a2-…+a2004)

=(1-
2
)
2004
(1+
2
)
2004
=[(1-
2
)(1+
2
)]
2004
=(-1)2004=1

所以:(a0+a2+a4+…+a20042-(a1+a3+a5+…+a20032=1.
點(diǎn)評(píng):本題考查組合數(shù)的性質(zhì):Cnm+Cnm-1=Cn+1m,考查利用賦值法求二項(xiàng)展開(kāi)式的系數(shù)和問(wèn)題,是高考?碱}型.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}是首項(xiàng)a1=
1
33
,公比q=
1
33
的等比數(shù)列,設(shè)bn+15log3an=t,常數(shù)t∈N*,數(shù)列{cn}滿足cn=anbn
(1)求證:{bn}是等差數(shù)列;
(2)若{cn}是遞減數(shù)列,求t的最小值;
(3)是否存在正整數(shù)k,使ck,ck+1,ck+2重新排列后成等比數(shù)列?若存在,求k,t的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足a1=
1
4
,an=
an-1
(-1)nan-1-2
(n≥2,n∈N*)

(1)求證:數(shù)列{
1
an
+(-1)n}
(n∈N*)是等比數(shù)列;
(2)設(shè)cn=ansin
(2n-1)π
2
,數(shù)列{cn}的前n項(xiàng)和Tn,求證:對(duì)任意的n∈N*,Tn
4
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的首項(xiàng)為a1=2,前n項(xiàng)和為Sn,且對(duì)任意的n∈N*n,≥2,an總是3Sn-4與2-
5
2
Sn-1
的等差中項(xiàng).
(1)求證:數(shù)列{an}是等比數(shù)列,并求通項(xiàng)an;
(2)證明:
1
2
(log2Sn+log2Sn+2)<log2Sn+1
;
(3)若bn=
4
an
-1,cn=log2(
4
an
)2
,Tn,Rn分別為{bn}、{cn}的前n項(xiàng)和.問(wèn):是否存在正整數(shù)n,使得Tn>Rn,若存在,請(qǐng)求出所有n的值,否則請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,且對(duì)于任意的n∈N*,恒有Sn=2an-n,設(shè)bn=log2(an+1),
(1)求證數(shù)列{an+1}是等比數(shù)列;
(2)求數(shù)列{an},{bn}的通項(xiàng)公式an和bn;
(3)設(shè)cn=
2bn
anan+1
,①求數(shù)列{cn}的最大值.②求
lim
n→∞
(
c1+c2+…+cn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•贛州模擬)如圖,在正三棱柱ABC-A1B1C1中,底面ABC為正三角形,M、N、G分別是棱CC1、AB、BC的中點(diǎn).且CC1=
2
AC

(1)求證:CN∥面AMB1;
(2)求證:B1M⊥面AMG;
(3)求:VAMB1GVABC-A1B1C1

查看答案和解析>>

同步練習(xí)冊(cè)答案