【題目】用數(shù)字2,3組成四位數(shù),且數(shù)字2,3至少都出現(xiàn)一次,這樣的四位數(shù)共有個.(用數(shù)字作答)

【答案】14
【解析】解:由題意知本題是一個分類計數(shù)問題,
首先確定數(shù)字中2和3 的個數(shù),
當數(shù)字中有1個2,3個3時,共有C41=4種結(jié)果,
當數(shù)字中有2個2,2個3時,共有C42=6種結(jié)果,
當數(shù)字中有3個2,1個3時,共有有C41=4種結(jié)果,
根據(jù)分類加法原理知共有4+6+4=14種結(jié)果,
所以答案是:14

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)的反函數(shù)為y=3x(x∈R),則f(x)=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義在R上的奇函數(shù)f(x),當x<0時,f(x)=x2﹣3x﹣1,那么x>0時,f(x)=(
A.x2﹣3x﹣1
B.x2+3x﹣1
C.﹣x2+3x+1
D.﹣x2﹣3x+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在下列命題中,不是公理的是( )
A.兩條相交直線確定一個平面
B.不在同一條直線上的三點確定一個平面
C.如果直線上有兩個點在平面α上,那么直線在平面α上
D.如果不同的兩個平面α、β有一個公共點A,那么α、β的交集是過點A的直線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)數(shù)列{an}共有4項,滿足a1>a2>a3>a4≥0,若對任意的i,j(1≤i≤j≤4,且i,j∈N*),ai﹣aj仍是數(shù)列{an}中的某一項.現(xiàn)有下列命題:①數(shù)列{an}一定是等差數(shù)列;②存在1≤i<j≤4,使得iai=jaj;③數(shù)列{an}中一定存在一項為0.其中,真命題的序號有 . (請將你認為正確命題的序號都寫上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)集合A={a,b},集合B={a+1,5},若A∩B={2},則A∪B等于(
A.{1,2}
B.{1,5}
C.{2,5}
D.{1,2,5}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)y=f(x)是定義在R上的偶函數(shù),且在(﹣∞,0]上是增函數(shù),若f(a)≤f(2),則實數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知隨機變量η=8﹣ξ,若ξ~B(10,0.6),則Eη,Dη分別是(
A.6和2.4
B.2和5.6
C.6和5.6
D.2和2.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)a∈R,若復數(shù)(1+i)(a+i)在復平面內(nèi)對應的點位于實軸上,則a=

查看答案和解析>>

同步練習冊答案