19.已知數(shù)列{an}的各項都是正數(shù),a1=1,對任意的k∈N*,a2k-1、a2k、a2k+1成等比數(shù)列,公比為qk;a2k、a2k+1、a2k+2成等差數(shù)列,公差為dk,且d1=2,則數(shù)列{dk}的通項公式為( 。
A.$\frac{k+1}{k}$B.k+1C.$\frac{k+3}{2}$D.$\frac{k}{k+1}$

分析 由a2k-1,a2k,a2k+1 成公比為qk 的等比數(shù)列,a2k+1,a2k+2,a2k+3 成公比為qk+1 的等比數(shù)列,可得:a2k+1=a2kqk,a2k+2=a2k+1qk+1,又 a2k,a2k+1,a2k+2 成等差數(shù)列,可得 2a2k+1=a2k+a2k+2. 可得:$\frac{1}{{{q_k}-1}}=k$,${q_k}=\frac{k+1}{k}$.$\frac{{{a_{2k+1}}}}{{{a_{2k-1}}}}={({\frac{k+1}{k}})^2}$,利用“累乘求積”即可得出.

解答 解:∵a2k-1,a2k,a2k+1 成公比為qk 的等比數(shù)列,a2k+1,a2k+2,a2k+3 成公比為qk+1 的等比數(shù)列,
∴a2k+1=a2kqk,a2k+2=a2k+1qk+1,
又∵a2k,a2k+1,a2k+2 成等差數(shù)列,∴2a2k+1=a2k+a2k+2
又a1>0,d=2,可求得:q1=2,$\frac{1}{{{q_1}-1}}=1$,∴$\frac{1}{{{q_k}-1}}=k$,${q_k}=\frac{k+1}{k}$.$\frac{{{a_{2k+1}}}}{{{a_{2k-1}}}}={({\frac{k+1}{k}})^2}$,
∴${a_{2k+1}}=\frac{{{a_{2k+1}}}}{{{a_{2k-1}}}}•\frac{{{a_{2k-1}}}}{{{a_{2k-3}}}}…\frac{a_3}{a_1}•{a_1}={({\frac{k+1}{k}})^2}•{({\frac{k}{k-1}})^2}…{({\frac{2}{1}})^2}•1={({k+1})^2}$,${a_{2k}}=\frac{{{a_{2k+1}}}}{q_k}=k({k+1})$,
∴dk=a2k+1-a2k=k+1.
故選:B.

點評 本題考查了等差數(shù)列與等比數(shù)列的通項公式、遞推關(guān)系、“累乘求積”,考查了變形能力、推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

13.已知數(shù)列{an}的前n項和為Sn,滿足Sn=2an-2(n∈N*
(1)求數(shù)列{an}的通項公式an;
(2)令bn=$\frac{lo{g}_{2}{a}_{n}^{2}-1}{{a}_{n}}$,數(shù)列{bn}的前n項和為Tn,求Tn以及滿足Tn>$\frac{5}{2}$時,n的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.設(shè)數(shù)列{an}的前n項和為Sn,若Sn=$\frac{1}{8}$(an+2)2,則a3的所有可能取值的和為12.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.把極坐標方程ρ=sinθ+cosθ化成直角坐標標準方程是(x-$\frac{1}{2}$)2+(y-$\frac{1}{2}$)2=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知數(shù)列{an}中,2an,an+1是方程x2-3x+bn=0的兩根,a1=2,則b5=-1054.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.某海濱浴場的海浪高度y(米)是時間t(0≤t≤24),單位:小時)的函數(shù),記為y=f(x),下表是某日各時的浪高數(shù)據(jù):經(jīng)長期觀察,y=f(t)的曲線可以近似地看出是函數(shù)y=Acos(ωt)+k(A>0)的曲線.
(1)求函數(shù)y=Acos(ωt)+k(A>0)的解析式;
(2)浴場規(guī)定:當海浪高度高于1米時才對沖浪愛好者開放,根據(jù)以上數(shù)據(jù),當天上午8:00時至晚上20:00時之間可供沖浪愛好者沖浪的時間約為多少時?
t時03691215182124
y米1.51.00.50.981.51.010.50.991.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.設(shè)a∈R,函數(shù)f(x)=$\frac{x-a}{(x+a)^{2}}$.
(1)若函數(shù)f(x)在(0,f(0))處的切線與直線y=3x-2平行,求a的值;
(2)若對于定義域內(nèi)的任意x1,總存在x2使得f(x2)<f(x1),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.在△ABC中,角A,B,C所對的邊分別為a,b,c,向量$\overrightarrow{m}$=($\sqrt{3}$cos$\frac{A}{2}$,sin$\frac{A}{2}$),$\overrightarrow{n}$=(-cos$\frac{B}{2}$,$\sqrt{3}$sin$\frac{B}{2}$),且滿足$\overrightarrow{m}$•$\overrightarrow{n}$=-$\frac{\sqrt{3}}{2}$.
(Ⅱ)求角C的大。
(Ⅱ)若△ABC的面積為$\frac{\sqrt{3}}{4}$,且a-b=2,求邊c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知函數(shù)f(x)是R上的偶函數(shù),在(-3,-2)上為減函數(shù)且對?x∈R都有f(2-x)=f(x),若A,B是鈍角三角形ABC的兩個銳角,則( 。
A.f(sinA)<f(cosB)B.f(sinA)>f(cosB)
C.f(sinA)=f(cosB)D.f(sinA)與與f(cosB)的大小關(guān)系不確定

查看答案和解析>>

同步練習冊答案