已知橢圓過(guò)點(diǎn),且離心率.
(1)求橢圓C的方程;
(2)已知過(guò)點(diǎn)的直線與該橢圓相交于A、B兩點(diǎn),試問(wèn):在直線上是否存在點(diǎn)P,使得是正三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(1)橢圓的方程為.(2)存在符合題意的點(diǎn).
解析試題分析:(1)由題意得 2分
解得
(2)討論當(dāng)直線的斜率為0時(shí),不存在符合題意的點(diǎn);
當(dāng)直線的斜率不為0時(shí),設(shè)直線的方程為,
代入,整理得,
設(shè),,應(yīng)用韋達(dá)定理得到,,
設(shè)存在符合題意的點(diǎn),
從而弦長(zhǎng)
,
設(shè)線段的中點(diǎn),則,
所以,
根據(jù)是正三角形,得到,且,
由得,
得到,
由得關(guān)于的方程,
解得..
(1)由題意得 2分
解得 4分
所以橢圓的方程為. 5分
(2)當(dāng)直線的斜率為0時(shí),不存在符合題意的點(diǎn); 6分
當(dāng)直線的斜率不為0時(shí),設(shè)直線的方程為,
代入,整理得,
設(shè),,則,,
設(shè)存在符合題意的點(diǎn),
則
, 8分
設(shè)線段的中點(diǎn),則,
所以,
因?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/a0/b/izenq.png" style="vertical-align:middle;" />是正三角形,所以,且, 9分
由得即,所以,
所以, 10分
由得,
解得
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)拋物線的焦點(diǎn)為,點(diǎn),線段的中點(diǎn)在拋物線上.設(shè)動(dòng)直線與拋物線相切于點(diǎn),且與拋物線的準(zhǔn)線相交于點(diǎn),以為直徑的圓記為圓.
(1)求的值;
(2)證明:圓與軸必有公共點(diǎn);
(3)在坐標(biāo)平面上是否存在定點(diǎn),使得圓恒過(guò)點(diǎn)?若存在,求出的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓的短半軸長(zhǎng)為半徑的圓與直線相切.
(1)求橢圓的方程;
(2)若過(guò)點(diǎn)(2,0)的直線與橢圓相交于兩點(diǎn),設(shè)為橢圓上一點(diǎn),且滿足(為坐標(biāo)原點(diǎn)),當(dāng)< 時(shí),求實(shí)數(shù)取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)橢圓的左、右焦點(diǎn)分別為,上頂點(diǎn)為A,在x軸負(fù)半軸上有一點(diǎn)B,滿足三點(diǎn)的圓與直線相切.
(1)求橢圓C的方程;
(2)過(guò)右焦點(diǎn)作斜率為k的直線與橢圓C交于M,N兩點(diǎn),線段MN的垂直平分線與x軸相交于點(diǎn)P(m,0),求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(2014·武漢模擬)已知點(diǎn)P是圓M:x2+(y+m)2=8(m>0,m≠)上一動(dòng)點(diǎn),點(diǎn)N(0,m)是圓M所在平面內(nèi)一定點(diǎn),線段NP的垂直平分線l與直線MP相交于點(diǎn)Q.
(1)當(dāng)P在圓M上運(yùn)動(dòng)時(shí),記動(dòng)點(diǎn)Q的軌跡為曲線Г,判斷曲線Г為何種曲線,并求出它的標(biāo)準(zhǔn)方程.
(2)過(guò)原點(diǎn)斜率為k的直線交曲線Г于A,B兩點(diǎn),其中A在第一象限,且它在x軸上的射影為點(diǎn)C,直線BC交曲線Г于另一點(diǎn)D,記直線AD的斜率為k′,是否存在m,使得對(duì)任意的k>0,都有|k·k′|=1?若存在,求m的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,橢圓經(jīng)過(guò)點(diǎn)P(1.),離心率e=,直線l的方程為x=4.
(1)求橢圓C的方程;
(2)AB是經(jīng)過(guò)右焦點(diǎn)F的任一弦(不經(jīng)過(guò)點(diǎn)P),設(shè)直線AB與直線l相交于點(diǎn)M,記PA,PB,PM的斜率分別為.問(wèn):是否存在常數(shù)λ,使得?若存在,求λ的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,離心率為,右焦點(diǎn)到右頂點(diǎn)的距離為.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線與橢圓交于兩點(diǎn),是否存在實(shí)數(shù),使成立?若存在,求的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知曲線的方程為,過(guò)原點(diǎn)作斜率為的直線和曲線相交,另一個(gè)交點(diǎn)記為,過(guò)作斜率為的直線與曲線相交,另一個(gè)交點(diǎn)記為,過(guò)作斜率為的直線與曲線相交,另一個(gè)交點(diǎn)記為,如此下去,一般地,過(guò)點(diǎn)作斜率為的直線與曲線相交,另一個(gè)交點(diǎn)記為,設(shè)點(diǎn)().
(1)指出,并求與的關(guān)系式();
(2)求()的通項(xiàng)公式,并指出點(diǎn)列,, ,, 向哪一點(diǎn)無(wú)限接近?說(shuō)明理由;
(3)令,數(shù)列的前項(xiàng)和為,設(shè),求所有可能的乘積的和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓,為坐標(biāo)原點(diǎn),橢圓的右準(zhǔn)線與軸的交點(diǎn)是.
(1)點(diǎn)在已知橢圓上,動(dòng)點(diǎn)滿足,求動(dòng)點(diǎn)的軌跡方程;
(2)過(guò)橢圓右焦點(diǎn)的直線與橢圓交于點(diǎn),求的面積的最大值
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com