函數(shù)f(x)=ax3+bx2+cx+d的圖象如圖所示,那么


  1. A.
    a<0,b>0,c>0
  2. B.
    a>0,b>0,c<0
  3. C.
    a<0,b>0,c<0
  4. D.
    a>0,b<0,c>0
B
分析:先由函數(shù)的圖象得到f(x)的單調(diào)性,據(jù)函數(shù)單調(diào)性與導(dǎo)函數(shù)符號(hào)的關(guān)系得到f′(x)的符號(hào)變化情況,求出導(dǎo)函數(shù),根據(jù)二次函數(shù)的圖象判斷出a的范圍,再根據(jù)x=0所在的單調(diào)區(qū)間得到c的范圍.
解答:由函數(shù)f(x)的圖象知f(x)先遞增,再遞減,再遞增
∴f′(x)先為正,再變?yōu)樨?fù),再變?yōu)檎?br />∵f′(x)=3ax2+2bx+c
∴a>0
∵在遞減區(qū)間內(nèi)
∴f′(0)<0,即c<0
故選B.
點(diǎn)評(píng):利用導(dǎo)函數(shù)解決函數(shù)的單調(diào)性問題,一般利用導(dǎo)函數(shù)的符號(hào)與函數(shù)單調(diào)性的關(guān)系,函數(shù)遞增,導(dǎo)函數(shù)大于0;函數(shù)遞減,導(dǎo)函數(shù)小于0.屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

有下列命題:
①若f(x)存在導(dǎo)函數(shù),則f′(2x)=[f(2x)]′.
②若函數(shù)h(x)=cos4x-sin4x,則h′(
π12
)=1
;
③若函數(shù)g(x)=(x-1)(x-2)…(x-2009)(x-2010),則g′(2010)=2009!.
④若三次函數(shù)f(x)=ax3+bx2+cx+d,則“a+b+c=0”是“f(x)有極值點(diǎn)”的充要條件.
其中真命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

18、已知函數(shù)f(x)=ax3-6ax2+b(x∈[-1,2])的最大值為3,最小值為-29,求a、b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0).
定義:(1)設(shè)f″(x)是函數(shù)y=f(x)的導(dǎo)數(shù)y=f′(x)的導(dǎo)數(shù),若方程f″(x)=0有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”;
定義:(2)設(shè)x0為常數(shù),若定義在R上的函數(shù)y=f(x)對(duì)于定義域內(nèi)的一切實(shí)數(shù)x,都有f(x0+x)+f(x0-x)=2f(x0)成立,則函數(shù)y=f(x)的圖象關(guān)于點(diǎn)(x0,f(x0))對(duì)稱.
己知f(x)=x3-3x2+2x+2,請(qǐng)回答下列問題:
(1)求函數(shù)f(x)的“拐點(diǎn)”A的坐標(biāo)
 
;
(2)檢驗(yàn)函數(shù)f(x)的圖象是否關(guān)于“拐點(diǎn)”A對(duì)稱,對(duì)于任意的三次函數(shù)寫出一個(gè)有關(guān)“拐點(diǎn)”的結(jié)論
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=ax3-2x2+a2x在x=1處有極小值,則實(shí)數(shù)a等于
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知下表為函數(shù)f(x)=ax3+cx+d部分自變量取值及其對(duì)應(yīng)函數(shù)值,為了便于研究,相關(guān)函數(shù)值取非整數(shù)值時(shí),取值精確到0.01.
x -0.61 -0.59 -0.56 -0.35 0 0.26 0.42 1.57 3.27
y 0.07 0.02 -0.03 -0.22 0 0.21 0.20 -10.04 -101.63
根據(jù)表中數(shù)據(jù),研究該函數(shù)的一些性質(zhì):
(1)判斷f(x)的奇偶性,并證明;
(2)判斷f(x)在[0.55,0.6]上是否存在零點(diǎn),并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案