已知橢圓,動(dòng)直線與橢圓相交于兩點(diǎn),且°(其中坐標(biāo)原點(diǎn)).

(Ⅰ)若橢圓過點(diǎn),且右焦點(diǎn)與短軸兩端點(diǎn)圍成等邊三角形.

(ⅰ)求橢圓的方程;

(ⅱ)求點(diǎn)到直線的距離.

(Ⅱ)探究是否存在定圓與直線總相切?若存在寫出定圓方程(不必寫過程),若不存在,說明理由.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•寧國(guó)市模擬)已知橢圓
x2
a2
+
y2
b2
=1
(a>b>0)經(jīng)過點(diǎn)M(
3
2
,
6
),它的焦距為2,它的左、右頂點(diǎn)分別為A1,A2,P1是該橢圓上的一個(gè)動(dòng)點(diǎn)(非頂點(diǎn)),點(diǎn)P2 是點(diǎn)P1關(guān)于x軸的對(duì)稱點(diǎn),直線A1P1與A2P2相交于點(diǎn)E.
(Ⅰ)求該橢圓的標(biāo)準(zhǔn)方程.
(Ⅱ)求點(diǎn)E的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖北省高三第二次質(zhì)量檢測(cè)理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知橢圓上的動(dòng)點(diǎn)到焦點(diǎn)距離的最小值為,以原點(diǎn)為圓心、橢圓的短半軸長(zhǎng)為半徑的圓與直線相切.

(Ⅰ)求橢圓的方程;

(Ⅱ)若過點(diǎn)(2,0)的直線與橢圓相交于兩點(diǎn),為橢圓上一點(diǎn), 且滿足

為坐標(biāo)原點(diǎn)),當(dāng) 時(shí),求實(shí)數(shù)的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省溫州八校高三9月期初聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分15分)已知橢圓上的動(dòng)點(diǎn)到焦點(diǎn)距離的最小值為。以原點(diǎn)為圓心、橢圓的短半軸長(zhǎng)為半徑的圓與直線相切.

(Ⅰ)求橢圓的方程;

(Ⅱ)若過點(diǎn)(2,0)的直線與橢圓相交于兩點(diǎn),為橢圓上一點(diǎn), 且滿足

為坐標(biāo)原點(diǎn))。當(dāng) 時(shí),求實(shí)數(shù)的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:,直線恒過的定點(diǎn)F為橢圓的一個(gè)焦點(diǎn),且橢圓上的點(diǎn)到焦點(diǎn)F的最大距離為3,

(1)求橢圓C的方程;

(2)若直線MN為垂直于x軸的動(dòng)弦,且M、N均在橢圓C上,定點(diǎn)T(4,0),直線MF與直線NT交于點(diǎn)S

①求證:點(diǎn)S恒在橢圓C上;

②求△MST面積的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年重慶一中高三(下)5月月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知橢圓C:,直線(m+3)x+(1-2m)y-m-3=0(m∈R)恒過的定點(diǎn)F為橢圓的一個(gè)焦點(diǎn),且橢圓上的點(diǎn)到焦點(diǎn)F的最大距離為3,
(1)求橢圓C的方程;
(2)若直線MN為垂直于x軸的動(dòng)弦,且M、N均在橢圓C上,定點(diǎn)T(4,0),直線MF與直線NT交于點(diǎn)S.求證:
①點(diǎn)S恒在橢圓C上;
②求△MST面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案