出租車幾何學(xué)是由十九世紀(jì)的赫爾曼-閔可夫斯基所創(chuàng)立的.在出租車幾何學(xué)中,點(diǎn)還是形如(x,y)的有序?qū)崝?shù)對(duì),直線還是滿足ax+by+c=0的所有(x,y)組成的圖形,角度大小的定義也和原來一樣.直角坐標(biāo)系內(nèi)任意兩點(diǎn)A(x1,y1),B(x2,y2)定義它們之間的一種“距離”:|AB|=|x1-x2|+|y1-y2|,請(qǐng)解決以下問題:
(1)求線段x+y=2(x≥0,y≥0)上一點(diǎn)M(x,y)的距離到原點(diǎn)O(0,0)的“距離”;
(2)定義:“圓”是所有到定點(diǎn)“距離”為定值的點(diǎn)組成的圖形,求“圓周”上的所有點(diǎn)到點(diǎn)Q(a,b)的“距離”均為 r的“圓”方程;
(3)點(diǎn)A(1,3)、B(6,9),寫出線段AB的垂直平分線的軌跡方程并畫出大致圖象.(說明所給圖形小正方形的單位是1)

解:(1)∵任意兩點(diǎn)A(x1,y1),B(x2,y2)定義它們之間的一種“距離”:|AB|=|x1-x2|+|y1-y2|,
∴線段x+y=2(x≥0,y≥0)上一點(diǎn)M(x,y)的距離到原點(diǎn)O(0,0)的“距離”:
MO=|x-0|+|y-0|=|x|+|y|=x+y=2.…(3分)
(2 )∵“圓”是所有到定點(diǎn)“距離”為定值的點(diǎn)組成的圖形,
∴“圓周”上的所有點(diǎn)到點(diǎn)Q(a,b)的“距離”均為 r的“圓”方程為:
|x-a|+|y-b|=r…(6分)
(3)由已知條件得|x-1|+|y-3|=|x-6|+|y-9|…(8分)
若x≤1,則y=8.5 …(10分)
若1≤x≤6,則x+y=9.5 …(12分)
若6≤x,則y=3.5 …(14分)
圖象如右圖所示.…(16分)
分析:(1)利用“距離”的定義能夠求出線段x+y=2(x≥0,y≥0)上一點(diǎn)M(x,y)的距離到原點(diǎn)O(0,0)的“距離”.
(2 )利用“圓”的概念,能夠求出“圓周”上的所有點(diǎn)到點(diǎn)Q(a,b)的“距離”均為 r的“圓”的方程.
(3)由已知條件,得|x-1|+|y-3|=|x-6|+|y-9,由此能夠求出線段AB的垂直平分線的軌跡方程并畫出大致圖象.
點(diǎn)評(píng):本題考查“距離”的定義,“圓”的概念,寫出線段AB的垂直平分線的軌跡方程并畫出大致圖象.解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意合理地進(jìn)行等價(jià)轉(zhuǎn)化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•奉賢區(qū)一模)出租車幾何學(xué)是由十九世紀(jì)的赫爾曼-閔可夫斯基所創(chuàng)立的.在出租車幾何學(xué)中,點(diǎn)還是形如(x,y)的有序?qū)崝?shù)對(duì),直線還是滿足ax+by+c=0的所有(x,y)組成的圖形,角度大小的定義也和原來一樣.直角坐標(biāo)系內(nèi)任意兩點(diǎn)A(x1,y1),B(x2,y2)定義它們之間的一種“距離”:|AB|=|x1-x2|+|y1-y2|,請(qǐng)解決以下問題:
(1)求點(diǎn)A(1,3)、B(6,9)的“距離”|AB|;
(2)求線段x+y=2(x≥0,y≥0)上一點(diǎn)M(x,y)的距離到原點(diǎn)O(0,0)的“距離”;
(3)定義:“圓”是所有到定點(diǎn)“距離”為定值的點(diǎn)組成的圖形,點(diǎn)A(1,3)、B(6,9),C(1,9),求經(jīng)過這三個(gè)點(diǎn)確定的一個(gè)“圓”的方程,并畫出大致圖象;(說明所給圖形小正方形的單位是1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•奉賢區(qū)一模)出租車幾何學(xué)是由十九世紀(jì)的赫爾曼-閔可夫斯基所創(chuàng)立的.在出租車幾何學(xué)中,點(diǎn)還是形如(x,y)的有序?qū)崝?shù)對(duì),直線還是滿足ax+by+c=0的所有(x,y)組成的圖形,角度大小的定義也和原來一樣.直角坐標(biāo)系內(nèi)任意兩點(diǎn)A(x1,y1),B(x2,y2)定義它們之間的一種“距離”:|AB|=|x1-x2|+|y1-y2|,請(qǐng)解決以下問題:
(1)求線段x+y=2(x≥0,y≥0)上一點(diǎn)M(x,y)的距離到原點(diǎn)O(0,0)的“距離”;
(2)定義:“圓”是所有到定點(diǎn)“距離”為定值的點(diǎn)組成的圖形,求“圓周”上的所有點(diǎn)到點(diǎn)Q(a,b)的“距離”均為 r的“圓”方程;
(3)點(diǎn)A(1,3)、B(6,9),寫出線段AB的垂直平分線的軌跡方程并畫出大致圖象.(說明所給圖形小正方形的單位是1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年上海市奉賢區(qū)高三期末調(diào)研試卷理科數(shù)學(xué) 題型:解答題

、出租車幾何學(xué)是由十九世紀(jì)的赫爾曼-閔可夫斯基所創(chuàng)立的。在出租車幾何學(xué)中,點(diǎn)還是形如的有序?qū)崝?shù)對(duì),直線還是滿足的所有組成的圖形,角度大小的定義也和原來一樣。直角坐標(biāo)系內(nèi)任意兩點(diǎn)定義它們之間的一種“距離”:,請(qǐng)解決以下問題:

1、(理)求線段上一點(diǎn)的距離到原點(diǎn)的“距離”;

(文)求點(diǎn)、的“距離”

2、(理)定義:“圓”是所有到定點(diǎn)“距離”為定值的點(diǎn)組成的圖形,

求“圓周”上的所有點(diǎn)到點(diǎn) 的“距離”均為 的“圓”方程;

(文)求線段上一點(diǎn)的距離到原點(diǎn)的“距離”;

3、(理)點(diǎn)、,寫出線段的垂直平分線的軌跡方程并畫出大致圖像.

(文)定義:“圓”是所有到定點(diǎn)“距離”為定值的點(diǎn)組成的圖形,點(diǎn)、,,求經(jīng)過這三個(gè)點(diǎn)確定的一個(gè)“圓”的方程,并畫出大致圖像;

(說明所給圖形小正方形的單位是1)

 

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年上海市奉賢區(qū)高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

出租車幾何學(xué)是由十九世紀(jì)的赫爾曼-閔可夫斯基所創(chuàng)立的.在出租車幾何學(xué)中,點(diǎn)還是形如(x,y)的有序?qū)崝?shù)對(duì),直線還是滿足ax+by+c=0的所有(x,y)組成的圖形,角度大小的定義也和原來一樣.直角坐標(biāo)系內(nèi)任意兩點(diǎn)A(x1,y1),B(x2,y2)定義它們之間的一種“距離”:|AB|=|x1-x2|+|y1-y2|,請(qǐng)解決以下問題:
(1)求點(diǎn)A(1,3)、B(6,9)的“距離”|AB|;
(2)求線段x+y=2(x≥0,y≥0)上一點(diǎn)M(x,y)的距離到原點(diǎn)O(0,0)的“距離”;
(3)定義:“圓”是所有到定點(diǎn)“距離”為定值的點(diǎn)組成的圖形,點(diǎn)A(1,3)、B(6,9),C(1,9),求經(jīng)過這三個(gè)點(diǎn)確定的一個(gè)“圓”的方程,并畫出大致圖象;(說明所給圖形小正方形的單位是1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年上海市奉賢區(qū)高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

出租車幾何學(xué)是由十九世紀(jì)的赫爾曼-閔可夫斯基所創(chuàng)立的.在出租車幾何學(xué)中,點(diǎn)還是形如(x,y)的有序?qū)崝?shù)對(duì),直線還是滿足ax+by+c=0的所有(x,y)組成的圖形,角度大小的定義也和原來一樣.直角坐標(biāo)系內(nèi)任意兩點(diǎn)A(x1,y1),B(x2,y2)定義它們之間的一種“距離”:|AB|=|x1-x2|+|y1-y2|,請(qǐng)解決以下問題:
(1)求線段x+y=2(x≥0,y≥0)上一點(diǎn)M(x,y)的距離到原點(diǎn)O(0,0)的“距離”;
(2)定義:“圓”是所有到定點(diǎn)“距離”為定值的點(diǎn)組成的圖形,求“圓周”上的所有點(diǎn)到點(diǎn)Q(a,b)的“距離”均為 r的“圓”方程;
(3)點(diǎn)A(1,3)、B(6,9),寫出線段AB的垂直平分線的軌跡方程并畫出大致圖象.(說明所給圖形小正方形的單位是1)

查看答案和解析>>

同步練習(xí)冊(cè)答案