13.求證函數(shù)y=ln$\frac{1}{1+x}$滿足關(guān)系式x$\frac{dy}{dx}$+1=ey

分析 利用導(dǎo)數(shù)的運(yùn)算法則即可證明.

解答 證明:∵y=ln$\frac{1}{1+x}$,∴$\frac{dy}{dx}$=y′=$\frac{(\frac{1}{1+x})^{′}}{\frac{1}{1+x}}$=-$\frac{1}{1+x}$,ey=$\frac{1}{1+x}$.
∴x$\frac{dy}{dx}$+1=1-$\frac{x}{1+x}$=$\frac{1}{1+x}$=ey
∴函數(shù)y=ln$\frac{1}{1+x}$滿足關(guān)系式x$\frac{dy}{dx}$+1=ey

點(diǎn)評 本題考查了利用導(dǎo)數(shù)的運(yùn)算法則證明等式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知曲線C的參數(shù)方程為$\left\{\begin{array}{l}x=2cosθ\\ y=2sinθ\end{array}\right.$,θ為參數(shù),以直角坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(1)求曲線C的極坐標(biāo)方程;
(2)若M(2,0),N為曲線C上的任意一點(diǎn),求線段MN中點(diǎn)的軌跡的普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知橢圓$\frac{x^2}{25}$+$\frac{y^2}{16}$=1的左、右焦點(diǎn)分別為F1,F(xiàn)2,P為橢圓上不同于長軸端點(diǎn)的任意一點(diǎn),則△PF1F2內(nèi)切圓半徑的最大值為( 。
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知拋物線y2=2px,(p>0)上存在兩點(diǎn)關(guān)于直線y=x-1對稱,則p的取值范圍是0<p<$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知[x]表示實(shí)數(shù)x的整數(shù)部分,即[x]表示不超過實(shí)數(shù)x的最大整數(shù),如[-2,1]=-3,[π]=3,[2]=2.函數(shù)y=[x]稱為高斯函數(shù),也叫取整函數(shù).
(1)當(dāng)-2≤x<-1時(shí),函數(shù)y=[x]的值是2.
(2)當(dāng)-2≤x<2時(shí),用分段函數(shù)表示y=[x]=$\left\{\begin{array}{l}{-2,}&{-2≤x<-1}\\{-1,}&{-1≤x<0}\\{0,}&{0≤x<1}\\{1,}&{1≤x<2}\end{array}\right.$.
(3)畫出函數(shù)y=[x](x∈R)的圖象.
(4)畫出函數(shù)y=x-[x](x∈R)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{9}$=1及直線l:y=$\frac{3}{2}$x+m,
(1)當(dāng)直線l與該橢圓有公共點(diǎn)時(shí),求實(shí)數(shù)m的取值范圍;
(2)求直線l被此橢圓截得的弦長的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.△ABC中,∠C=90°,則函數(shù)y=sin2A+2sinB的值的情況為( 。
A.有最大值,無最小值B.無最大值,有最小值
C.有最大值且有最小值D.無最大值且無最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.函數(shù)y=sinx(x∈[0,π])圖象上兩個(gè)點(diǎn)A(x1,y1),B(x2,y2)(x1<x2)滿足AB∥x軸,點(diǎn)C的坐標(biāo)為(π,0),則四邊形OABC的面積取最大值時(shí),x1+tanx1=π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)函數(shù)f(x)=$\frac{1}{xlnx}$(x>0且x≠1),求函數(shù)f(x)的單調(diào)區(qū)間和極值.

查看答案和解析>>

同步練習(xí)冊答案