.用5種不同的顏色給圖中所給出的四個區(qū)域涂色,每個區(qū)域涂一種顏色,若要求相鄰(有公共邊)的區(qū)域不同色,那么共有多少種不同的涂色方法?

                                       

260


解析:

完成該件事可分步進行.

涂區(qū)域1,有5種顏色可選.

涂區(qū)域2,有4種顏色可選.

涂區(qū)域3,可先分類:若區(qū)域3的顏色與2相同,則區(qū)域4有4種顏色可選.若區(qū)域3的顏色與2不同,則區(qū)域3有3種顏色可選,此時區(qū)域4有3種顏色可選.

所以共有5×4×(1×4+3×3)=260種涂色方法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

直線x=m,y=x將圓面x2+y2≤4分成若干塊.現(xiàn)在用5種不同的顏色給這若干塊涂色,每塊只涂一種顏色,且任意兩塊不同色,若共有120種不同的涂法,則實數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

8、如圖,用5種不同的顏色給圖中的4個格子涂色,每個格子涂一種顏色,要求相鄰兩格的顏色不同,則不同涂色方法的種數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,用5種不同的顏色給圖中的3個格子涂色,每個格子涂一種顏色,要求相鄰兩格的顏色不同,則不同涂色方法的種數(shù)為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用直線y=m和直線y=x將區(qū)域x2+y2≤6分成若干塊.現(xiàn)在用5種不同的顏色給這若干塊染色,每塊只染一種顏色,且任意兩塊不同色,若共有120種不同的染色方法,則實數(shù)m的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年山西省太原二中高考數(shù)學(xué)二模試卷(解析版) 題型:解答題

直線x=m,y=x將圓面x2+y2≤4分成若干塊.現(xiàn)在用5種不同的顏色給這若干塊涂色,每塊只涂一種顏色,且任意兩塊不同色,若共有120種不同的涂法,則實數(shù)m的取值范圍是    

查看答案和解析>>

同步練習(xí)冊答案