如圖,平面VAD⊥平面ABCD,△VAD是等邊三角形,ABCD是矩形,AB∶AD=∶1,F(xiàn)是AB的中點.

(1)求VC與平面ABCD所成的角;

(2)求二面角V-FC-B的度數(shù);

(3)當V到平面ABCD的距離是3時,求B到平面VFC的距離.

答案:
解析:

  取AD的中點G,連結VG,CG.

  (1)∵△ADV為正三角形,∴VG⊥AD.又平面VAD⊥平面ABCD,AD為交線,∴VG⊥平面ABCD,則∠VCG為CV與平面ABCD所成的角.設AD=a,則,.在Rt△GDC中,.在Rt△VGC中,

  ∴.即VC與平面ABCD成30°.

  (2)連結GF,則.而.在△GFC中,.∴GF⊥FC.連結VF,由VG⊥平面ABCD知VF⊥FC,則∠VFG即為二面角V-FC-D的平面角.在Rt△VFG中,.∴∠VFG=45°.二面角V-FC-B的度數(shù)為135°.

  (3)設B到平面VFC的距離為h,當V到平面ABCD的距離是3時,即VG=3.此時,,.∴,.∵,∴.∴

  ∴即B到面VCF的距離為


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

11、如圖所示,平面M、N互相垂直,棱l上有兩點A、B,AC?M,BD?N,且AC⊥l,AB=8cm,AC=6cm,BD=24cm,則CD=
26cm

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,邊長為a的正△ABC的中線AF與中位線DE相交于G,已知△A′ED是△AED繞DE旋轉過程中的一個圖形,現(xiàn)給出下列命題,其中正確的命題有
(1)(2)(3)
(1)(2)(3)
.(填上所有正確命題的序號) 
(1)動點A′在平面ABC上的射影在線段AF上;
(2)三棱錐A′-FED的體積有最大值;
(3)恒有平面A′GF⊥平面BCED;
(4)異面直線A′E與BD不可能互相垂直.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•石景山區(qū)一模)如圖,已知平面α∩β=l,A、B是l上的兩個點,C、D在平面β內,且DA⊥α,CB⊥α,AD=4,AB=6,BC=8,在平面α上有一個動點P,使得∠APD=∠BPC,則△PAB面積的最大值是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網如圖,邊長為a的等邊三角形ABC的中線AF與中位線DE交于點G,將△ADE繞DE旋轉得到△A′DE(A′∉平面ABC),則下列敘述錯誤的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網如圖,在三棱錐A-BCD中,平行于BC的平面MNPQ分別交AB、AC、CD、BD于M、N、P、Q四點,且MN=PQ.
(1)求證:四邊形MNPQ為平行四邊形;
(2)試在直線AC上找一點F,使得MF⊥AD.

查看答案和解析>>

同步練習冊答案