【題目】在平面直角坐標(biāo)系中,已知曲線為參數(shù)),在以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立的極坐標(biāo)系中,直線的極坐標(biāo)方程為.

(1)求曲線的普通方程和直線的直角坐標(biāo)方程;

(2)過(guò)點(diǎn)且與直線平行的直線,兩點(diǎn),求點(diǎn),兩點(diǎn)的距離之積.

【答案】(1);;(2)1。

【解析】

(1)消去曲線的參數(shù)方程中的參數(shù)后可得普通方程,運(yùn)用轉(zhuǎn)化公式并結(jié)合直線的極坐標(biāo)方程可得直線的直角坐標(biāo)方程.(2)由題意得到直線的參數(shù)方程,代入曲線的普通方程后,再根據(jù)直線參數(shù)方程中參數(shù)的幾何意義求解.

(1)消去方程為參數(shù))中的參數(shù),可得曲線的普通方程為

,得

代入上式可得,

所以直線的直角坐標(biāo)方程為

(2)由題意可得直線的傾斜角為,且過(guò)點(diǎn),

所以直線的參數(shù)方程為為參數(shù)),

把參數(shù)方程代入方程,化簡(jiǎn)得,

設(shè),兩點(diǎn)所對(duì)應(yīng)的參數(shù)分別為,,

所以.

即點(diǎn),兩點(diǎn)的距離之積為1.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列敘述正確的是(

A.相關(guān)關(guān)系是一種確定性關(guān)系,一般可分為正相關(guān)和負(fù)相關(guān)

B.回歸直線一定過(guò)樣本點(diǎn)的中心

C.在回歸分析中,的模型比的模型擬合的效果好

D.某同學(xué)研究賣(mài)出的熱飲杯數(shù)與氣溫(℃)時(shí),一定可賣(mài)出杯熱飲

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】21世紀(jì)城的街道都是東西向和南北向,為了加強(qiáng)安全管理,在一些十字路口設(shè)置保安亭(任何兩個(gè)保安亭都不在同一街道上),以?xún)蓚(gè)保安亭為其兩個(gè)頂點(diǎn)、街道為邊圍成的矩形稱(chēng)為一個(gè)安全區(qū),安全區(qū)(包括邊界)內(nèi)保安亭的個(gè)數(shù)稱(chēng)為該安全區(qū)的安全強(qiáng)度.如果世紀(jì)城兩個(gè)方向的街道都至少有,且任何兩條不平行的街道都交成一個(gè)十字路口,今按要求選定個(gè)十字路口設(shè)置保安亭,求安全強(qiáng)度最大的安全區(qū)的安全強(qiáng)度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩個(gè)班級(jí)(各40名學(xué)生)進(jìn)行一門(mén)考試,為易于統(tǒng)計(jì)分析,將甲、乙兩個(gè)班學(xué)生的成績(jī)分成如下四組:,,,,并分別繪制了如下的頻率分布直方圖:

規(guī)定:成績(jī)不低于90分的為優(yōu)秀,低于90分的為不優(yōu)秀.

1)根據(jù)這次抽查的數(shù)據(jù),填寫(xiě)下面的列聯(lián)表:

優(yōu)秀

不優(yōu)秀

合計(jì)

甲班

乙班

合計(jì)

2)根據(jù)(1)中的列聯(lián)表,能否有的把握認(rèn)為成績(jī)是否優(yōu)秀與班級(jí)有關(guān)?

附:臨界值參考表與參考公式

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,點(diǎn)在橢圓上.

(1)求橢圓的方程;

(2)若不過(guò)原點(diǎn)的直線與橢圓相交于兩點(diǎn),與直線相交于點(diǎn),且是線段的中點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“中國(guó)人均讀書(shū)4.3本(包括網(wǎng)絡(luò)文學(xué)和教科書(shū)),比韓國(guó)的11本.法國(guó)的20本.日本的40本.猶太人的64本少得多,是世界上人均讀書(shū)最少的國(guó)家.”這個(gè)論斷被各種媒體反復(fù)引用.出現(xiàn)這樣的統(tǒng)計(jì)結(jié)果無(wú)疑是令人尷尬的,而且和其他國(guó)家相比,我國(guó)國(guó)民的閱讀量如此之低,也和我國(guó)是傳統(tǒng)的文明古國(guó).禮儀之邦的地位不相符.某小區(qū)為了提高小區(qū)內(nèi)人員的讀書(shū)興趣,特舉辦讀書(shū)活動(dòng),準(zhǔn)備進(jìn)一定量的書(shū)籍豐富小區(qū)圖書(shū)站,由于不同年齡段需看不同類(lèi)型的書(shū)籍,為了合理配備資源,現(xiàn)對(duì)小區(qū)內(nèi)看書(shū)人員進(jìn)行年齡調(diào)查,隨機(jī)抽取了一天名讀書(shū)者進(jìn)行調(diào)查,將他們的年齡分成6段: , , , , 后得到如圖所示的頻率分布直方圖.問(wèn):

(1)估計(jì)在40名讀書(shū)者中年齡分布在的人數(shù);

(2)求40名讀書(shū)者年齡的平均數(shù)和中位數(shù);

(3)若從年齡在的讀書(shū)者中任取2名,求恰有1名讀書(shū)者年齡在的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(題文)已知正方體的棱長(zhǎng)為1,每條棱所在直線與平面α所成的角都相等,則α截此正方體所得截面面積的最大值為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在圓上任取一點(diǎn),過(guò)點(diǎn)軸的垂線段,為垂足.當(dāng)點(diǎn)在圓上運(yùn)動(dòng)時(shí),線段的中點(diǎn)形成軌跡

1)求軌跡的方程;

2)若直線與曲線交于兩點(diǎn),為曲線上一動(dòng)點(diǎn),求面積的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某大型商場(chǎng)在2018年國(guó)慶舉辦了一次抽獎(jiǎng)活動(dòng)抽獎(jiǎng)箱里放有3個(gè)紅球,3個(gè)黑球和1個(gè)白球這些小球除顏色外大小形狀完全相同,從中隨機(jī)一次性取3個(gè)小球,每位顧客每次抽完獎(jiǎng)后將球放回抽獎(jiǎng)箱活動(dòng)另附說(shuō)明如下:

凡購(gòu)物滿(mǎn)元者,憑購(gòu)物打印憑條可獲得一次抽獎(jiǎng)機(jī)會(huì);

凡購(gòu)物滿(mǎn)元者,憑購(gòu)物打印憑條可獲得兩次抽獎(jiǎng)機(jī)會(huì);

若取得的3個(gè)小球只有1種顏色,則該顧客中得一等獎(jiǎng),獎(jiǎng)金是一個(gè)10元的紅包;

若取得的3個(gè)小球有3種顏色,則該顧客中得二等獎(jiǎng),獎(jiǎng)金是一個(gè)5元的紅包;

若取得的3個(gè)小球只有2種顏色,則該顧客中得三等獎(jiǎng),獎(jiǎng)金是一個(gè)2元的紅包.

抽獎(jiǎng)活動(dòng)的組織者記錄了該超市前20位顧客的購(gòu)物消費(fèi)數(shù)據(jù)單位:元,繪制得到如圖所示的莖葉圖.

求這20位顧客中獲得抽獎(jiǎng)機(jī)會(huì)的顧客的購(gòu)物消費(fèi)數(shù)據(jù)的中位數(shù)與平均數(shù)結(jié)果精確到整數(shù)部分

記一次抽獎(jiǎng)獲得的紅包獎(jiǎng)金數(shù)單位:元X,求X的分布列及數(shù)學(xué)期望,并計(jì)算這20位顧客在抽獎(jiǎng)中獲得紅包的總獎(jiǎng)金數(shù)的平均值假定每位獲得抽獎(jiǎng)機(jī)會(huì)的顧客都會(huì)去抽獎(jiǎng)

查看答案和解析>>

同步練習(xí)冊(cè)答案