棱長均為2
2
的四面體各頂點都在同一個球面上,則該球的體積為( 。
A、
3
B、4π
C、4
3
π
D、12π
考點:球的體積和表面積
專題:計算題,空間位置關(guān)系與距離
分析:將正四面體補成正方體,再將正方體放在一個球體中,利用它們之間的關(guān)系求解.
解答: 解:如圖,將正四面體補形成一個正方體,
∵正四面體棱長均為2
2
,∴正方體的棱長是2,
又∵球的直徑是正方體的對角線,設(shè)球半徑是R,
∴2R=2
3
,
∴R=
3
,
∴球的體積為
4
3
π•(
3
)3
=4
3
π.
故選:C.
點評:巧妙構(gòu)造正方體,利用正方體的外接球的直徑為正方體的對角線,從而將問題巧妙轉(zhuǎn)化.若已知正四面體V-ABC的棱長為a,求外接球的半徑,我們可以構(gòu)造出一個球的內(nèi)接正方體,再應用對角線長等于球的直徑可求得.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax2-4x+1在區(qū)間(0,1)內(nèi)恰有一個零點,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知條件p:
4
x-1
≤-1,條件q:x2+x<a2-a,且¬q的一個充分不必要條件是¬p,則a的取值范圍是( 。
A、[-2,-
1
2
]
B、[
1
2
,2]
C、[-1,2]
D、(-2,
1
2
]∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=x3-12x+16,x∈[-2,3]的最大值是( 。
A、32B、35C、40D、60

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義在R上的偶函數(shù)f(x)滿足f(π+x)=f(π-x),若x∈[0,π]時解析為f(x)=cosx,則f(x)>0的解集是( 。╧∈z)
A、(2kπ-
3
2
π,2kπ+
π
2
B、(2kπ-
π
2
,2kπ+
π
2
C、(2kπ,2kπ+π)
D、(2kπ,2kπ+
π
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)a∈R,若函數(shù)y=ex+1+ax(x∈R)有大于0的極值點,則( 。
A、a<-eB、a>-e
C、a<-1D、a>-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在斜三角形△ABC中,三內(nèi)角分別為A,B,C,下列結(jié)論正確的個數(shù)是( 。
①A>B?sinA>sinB;
②A>B?cosA<cosB;
③A>B?tanA>tanB.
A、0個B、1個C、2個D、3個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓中一段弧長正好等于該圓的外切正三角形的邊長,那么這段弧所對的圓心角的弧度數(shù)為( 。
A、
3
2
B、
3
3
C、
3
D、2
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x3-
1
2
x2+bx+c,且f(x)在x=1處取得極值.
(Ⅰ)求b的值;
(Ⅱ)若當x∈[-1,2]時,f(x)<c2恒成立,求c的取值范圍;
(Ⅲ)對任意的x1,x2∈[-1,2],|f(x1)-f(x2)|≤
7
2
是否恒成立?如果成立,給出證明,如果不成立,請說明理由.

查看答案和解析>>

同步練習冊答案