已知x=1是函數(shù)f(x)=(ax-2)ex的一個極值點.(a∈R)
(Ⅰ)求a的值;
(Ⅱ)當(dāng)x1,x2∈[0,2]時,證明:f(x1)-f(x2)≤e.
【答案】分析:(I)先求出函數(shù)f(x)的導(dǎo)函數(shù),然后根據(jù)在極值點處的導(dǎo)數(shù)等于0,建立等式關(guān)系,求出a即可;
(II)確定函數(shù)f(x)在區(qū)間[0,2]上的最大值與最小值,從而f(x1)-f(x2)≤fmax(x)-fmin(x),由此可得到結(jié)論.
解答:(Ⅰ)解:已知f′(x)=(ax+a-2)ex,f'(1)=0,∴a=1.
當(dāng)a=1時,f′(x)=(x-1)ex,在x=1處取得極小值.
(Ⅱ)證明:由(Ⅰ)知,f(x)=(x-2)ex,f′(x)=(x-1)ex
當(dāng)x∈[0,1]時,f′(x)=(x-1)ex≤0,∴f(x)在區(qū)間[0,1]單調(diào)遞減;
當(dāng)x∈(1,2]時,f′(x)=(x-2)ex>0,∴f(x)在區(qū)間(1,2]單調(diào)遞增.
所以在區(qū)間[0,2]上,f(x)的最小值為f(1)=-e,又f(0)=-2,f(2)=0,
所以在區(qū)間[0,2]上,f(x)的最大值為f(2)=0.
對于x1,x2∈[0,2],有f(x1)-f(x2)≤fmax(x)-fmin(x).
所以f(x1)-f(x2)≤0-(-e)=e.
點評:本題綜合考查函數(shù)的極值以及利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,同時考查函數(shù)的最值的求解,是一道綜合題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知x=1是函數(shù)f(x)=mx3-3(m+1)x2+nx+1的一個極值點,其中m,n∈R,m<0.
(Ⅰ)求m與n的關(guān)系表達(dá)式;
(Ⅱ)求f(x)的單調(diào)區(qū)間;
(Ⅲ)當(dāng)x∈[-1,1]時,函數(shù)y=f(x)的圖象上任意一點的切線斜率恒大于3m,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

22、已知x=1是函數(shù)f(x)=x3-nx2+3(m+1)x+n+1(m、n∈R,m≠0)的一個極值點.
(1)求m與n的關(guān)系表達(dá)式;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

18、已知x=1是函數(shù)f(x)=x3-ax(a為參數(shù))的一個極值點.
(1)求a的值;
(2)求x∈[0,2]時,函數(shù)f(x)的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x=1是函數(shù)f(x)=mx3-3(m+1)x2+nx+1的一個極值點,其中m,n∈R,m≠0
(1)求m與n的關(guān)系式;
(2)求f(x)的單調(diào)區(qū)間;
(3)設(shè)函數(shù)函數(shù)g(x)=
1
e
x2gex-
1
3
x3-x2,φ(x)=
2
3
x3-x2;試比較g(x)與φ(x)的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x=1是函數(shù)f(x)=x3-ax(a為參數(shù))的一個極值點.
(Ⅰ)求f(x)的解析式;
(Ⅱ)當(dāng)x∈[0,2]時,求函數(shù)f(x)的最大值與最小值.

查看答案和解析>>

同步練習(xí)冊答案