若橢圓數(shù)學公式上一點P到其焦點F1的距離為6,則P到另一焦點F2的距離為________.

14
分析:根據(jù)橢圓的定義可得|PF1|+|PF2|=2a=20,結合P到其焦點F1的距離為6,可求P到另一焦點F2的距離.
解答:根據(jù)橢圓的定義可得|PF1|+|PF2|=2a=20
∵P到其焦點F1的距離為6,
∴|PF2|=20-6=14
即P到另一焦點F2的距離為14
故答案為:14.
點評:本題考查橢圓的定義,考查學生的計算能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知橢圓橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0).定義圓心在原點O,半徑為
a2+b2
的圓是橢圓C的“準圓”.若橢圓C的一個焦點為F(
2
,0),其短軸上的一個端點到F的距離為
3

(Ⅰ)求橢圓C的方程和其“準圓”方程;
(Ⅱ)點P是橢圓C的“準圓”上的一個動點,過動點P作直線l1,l2,使得l1,l2與橢圓C都只有一個交點,且l1,l2分別交其“準圓”于另一點M,N.求證:|MN|為定值.

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年河北省石家莊市畢業(yè)班復習質量檢測數(shù)學理卷 題型:填空題

. 已知橢鞏上一點P到其左準線的距離為10,F是該橢圓的左焦點,若點M滿足(其中O為坐標原點),則=_________

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓上一點P到其左準線的距離為10,F是該橢圓的左焦點,若點M滿足(其中O為坐標原點),則=_________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓上一點P到其左準線的距離為10,F是該橢圓的左焦點,若點M滿足(其中O為坐標原點),則=_________

查看答案和解析>>

同步練習冊答案