設(shè)數(shù)列{an}的前項n和為Sn,若對于任意的正整數(shù)n都有Sn=2an-3n.
(1)設(shè)bn=an+3,求證:數(shù)列{bn}是等比數(shù)列,并求出{an}的通項公式.
(2)求數(shù)列{an-n}的前n項和Tn
考點:數(shù)列的求和
專題:等差數(shù)列與等比數(shù)列
分析:(1)由已知條件推導出a1=3,an=2an-1+3,從而得到an+3=2(an-1+3),a1+3=6,由此能證明數(shù)列{bn}是首項為6,公比為2的等比數(shù)列,進而求出an=3•2n-3.
(2)由an-n=3•2n-3-n,能求出數(shù)列{an-n}的前n項和Tn
解答: (1)證明:∵Sn=2an-3n,
∴a1=S1=2a1-3,解得a1=3,
n≥2時,an=Sn-Sn-1=2an-2an-1-3,
∴an=2an-1+3,
∴an+3=2(an-1+3),
又a1+3=6,bn=an+3,
∴數(shù)列{bn}是首項為6,公比為2的等比數(shù)列,
∴an+3=6•2n-1=3•2n,
∴an=3•2n-3.
(2)解:∵an-n=3•2n-3-n,
∴Sn=3×
2(1-2n)
1-2
-3n-
n(n+1)
2

=6•2n-
1
2
n2
-
7
2
n
-6.
點評:本題考查等比數(shù)列的證明,考查數(shù)列的通項公式的求法,考查數(shù)列的前n項和的求法,解題時要認真審題,注意構(gòu)造法的合理運用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,且a1=
1
2
,an+1=
n+1
2n
an
(1)求證:數(shù)列{
n
an
}是等比數(shù)列;
(2)設(shè)bn=n(2-Sn),n∈N*,若集合M={n|bn≥λ,n∈N*}恰有5個元素,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知O(0,0),A(3,0),B(0,3),C(cosα,sinα),α∈(0,π)
(1)若|
OA
+
OC
|=
13
,求α的值;
(2)
AC
BC
=-1,求sinα-cosα的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax-
b
x+1
(a,b∈N*)
,f(1)=
1
2
且f(2)<2.
(Ⅰ)求a,b的值;
(Ⅱ)判斷并證明函數(shù)y=f(x)在區(qū)間(-1,+∞)上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖1,在直角梯形ABCD中,AD∥BC,AD=AB=
2
,∠BAD=90°,∠BCD=45°,E為對角線BD的中點.現(xiàn)將△ABD沿BD折起到△PBD的位置,使平面PBD⊥平面BCD,如圖2.
(Ⅰ)求證直線PE⊥平面BCD;
(Ⅱ)求異面直線BD和PC所成角的余弦值;
(Ⅲ)已知空間存在一點Q到點P,B,C,D的距離相等,寫出這個距離的值(不用說明理由).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

觀察以下各等式:
sin230°+cos260°+sin30°cos60°=
3
4

sin220°+cos250°+sin20°cos50°=
3
4

sin215°+cos245°+sin15°cos45°=
3
4

分析上述各式的共同特點,猜想出反映一般規(guī)律的等式,并對等式的正確性作出證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2sinωxcosωx=2
3
sin2ωx-
3
(ω>0)的最小正周期為π.
(Ⅰ)求函數(shù)f(x)的單調(diào)增區(qū)間;
(Ⅱ)將函數(shù)f(x)的圖象向左平移
π
3
個單位,再向上平移a(a>0)個單位,得到函數(shù)y=g(x)的圖象.若y=g(x)在區(qū)間[0,
π
4
]上的最大值與最小值的和為5,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱柱ABCD-A1B1C1D1中,AB1⊥BC,AB∥CD,BC⊥AB且AA1=AB=AD=2,∠A1AB=∠DAB=60°.
(1)求證:AB1⊥平面A1BC;
(2)求該四棱柱的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x=1是函數(shù)f(x)=2x+
a
x
+lnx
的一個極值點,
(1)求a的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

同步練習冊答案