分析:(1)先利用多項(xiàng)式的乘法展開(kāi),然后利用導(dǎo)數(shù)的運(yùn)算法則求出函數(shù)的導(dǎo)數(shù).
(2)利用商的導(dǎo)數(shù)的運(yùn)算法則及冪函數(shù)的導(dǎo)數(shù)公式求出函數(shù)的導(dǎo)數(shù),
(3)先利用二倍角的正弦公式化簡(jiǎn)函數(shù),然后利用導(dǎo)數(shù)的運(yùn)算法則及初等函數(shù)的導(dǎo)數(shù)公式求出函數(shù)的導(dǎo)數(shù).
解答:解:(1)y=(x-2)(3x+4)=3x
2-2x-8,
y′=6x-2
(2)y′=
(x3-1)′(x2+1)-(x3-1)(x2+1)′ |
(x2+1)2 |
=
3x2(x2+1)-2x(x3-1) |
(x2+1)2 |
=
(3)
y=x2+sincos=
x2+sinx所以y′=2x
+cosx 點(diǎn)評(píng):本題考查利用導(dǎo)數(shù)的運(yùn)算法則及初等函數(shù)的導(dǎo)數(shù)公式求函數(shù)的導(dǎo)數(shù),一般應(yīng)該先化簡(jiǎn)函數(shù)解析式,屬于基礎(chǔ)題.