2.已知函數(shù)f(x)=acos2x+bsin2x+$\sqrt{3}$的圖象過點($\frac{π}{12}$,2$\sqrt{3}$)和點($\frac{2π}{3}$,-2+$\sqrt{3}$),求:
(1)函數(shù)在x∈[-$\frac{π}{2}$,$\frac{π}{2}$]的單調(diào)遞減區(qū)間;
(2)將函數(shù)f(x)的圖象向右平移$\frac{π}{6}$個單位,再向下平移$\sqrt{3}$個單位,然后保持縱坐標不變,橫坐標縮短為原來的$\frac{1}{2}$得到函數(shù)y=g(x),求g(x)的最小正周期和在[-$\frac{π}{4}$,-$\frac{π}{16}$]的最小值.

分析 (1)由題意,可以由圖象過的兩個點建立兩個方程,求出a,b兩個未知數(shù),即可得到y(tǒng)=f(x)的解析式,進一步在x∈[-$\frac{π}{2}$,$\frac{π}{2}$]的單調(diào)遞減區(qū)間;
(2)將y=f(x)經(jīng)過平移伸縮變換得到y(tǒng)=g(x)的解析式,由T=$\frac{2π}{ω}$求得最小正周期;利用y=g(x)在[-$\frac{π}{4}$,-$\frac{π}{16}$]的單調(diào)性求出最小值.

解答 解:(1)由題意得:
$\left\{\begin{array}{l}{acos(2*\frac{π}{12})+bsin(2*\frac{π}{12})+\sqrt{3}=2\sqrt{3}}\\{acos(2*\frac{2π}{3})+bsin(2*\frac{2π}{3})+\sqrt{3}=-2+\sqrt{3}}\end{array}\right.$,解得$\left\{\begin{array}{l}{a=1}\\{b=\sqrt{3}}\end{array}\right.$,
所以f(x)=cos2x+$\sqrt{3}$sin2x+$\sqrt{3}$=2sin(2x+$\frac{π}{6}$)+$\sqrt{3}$,
由$\frac{π}{2}+2kπ≤2x+\frac{π}{6}≤\frac{3π}{2}+2kπ$(k∈Z)
得:$\frac{π}{6}+kπ≤x≤\frac{2}{3}π+kπ$(k∈Z),
所以減區(qū)間為:[$\frac{π}{6}+kπ,\frac{2}{3}π+kπ$](k∈Z),
所以當k=-1時,為[-$\frac{5π}{6}$,$-\frac{π}{3}$],
當k=0時,為[$\frac{π}{6}$,$\frac{2π}{3}$],
又因為x∈[-$\frac{π}{2}$,$\frac{π}{2}$],
單調(diào)遞減區(qū)間為[$-\frac{π}{2}$,$-\frac{π}{3}$],[$\frac{π}{6}$,$\frac{π}{2}$];
(2)由(1)可知f(x)=2sin(2x+$\frac{π}{6}$)+$\sqrt{3}$,
向右平移$\frac{π}{6}$個單位得y=2sin[2(x-$\frac{π}{6}$)+$\frac{π}{6}$]+$\sqrt{3}$即y=2sin(2x-$\frac{π}{6}$)+$\sqrt{3}$,
再向下平移$\sqrt{3}$個單位得y=2sin(2x-$\frac{π}{6}$),
然后保持縱坐標不變,橫坐標縮短為原來的$\frac{1}{2}$得y=2sin(4x-$\frac{π}{6}$),
即g(x)=2sin(4x-$\frac{π}{6}$),
所以T=$\frac{π}{2}$;
又因為x∈[-$\frac{π}{4}$,-$\frac{π}{16}$],
所以4x-$\frac{π}{6}$∈[-$\frac{5π}{6}$,-$\frac{5π}{12}$],
所以當4x-$\frac{π}{6}$=-$\frac{π}{2}$時,函數(shù)y=g(x)取得最小值為-2.

點評 本題難度中等,屬于三角函數(shù)內(nèi)容里的常見題型,綜合性較強.主要考察①用待定系數(shù)法求函數(shù)解析式②已知定義域求函數(shù)單調(diào)性③以及函數(shù)圖象的平移伸縮變化等內(nèi)容.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

12.已知圓M的圓心為M(-1,2),直線y=x+4被圓M截得的弦長為$\sqrt{2}$,點P在直線l:y=x-1上.
(1)求圓M的標準方程;
(2)設點Q在圓M上,且滿足$\overrightarrow{MP}$=4$\overrightarrow{QM}$,求點P的坐標;
(3)設半徑為5的圓N與圓M相離,過點P分別作圓M與圓N的切線,切點分別為A,B,若對任意的點P,都有PA=PB成立,求圓心N的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.若sin2α=$\frac{2}{3}$,則sin2(α-$\frac{π}{4}$)=( 。
A.$\frac{2}{3}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.用反證法證明命題:“若(a-1)(b-1)(c-1)<0,則a,b,c中至少有一個小于1”時,下列假設中正確的是( 。
A.假設a,b,c中至多有一個大于1B.假設a,b,c中至多有兩個小于1
C.假設a,b,c都大于1D.假設a,b,c都不小于1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.同時拋擲2枚質(zhì)地均勻的硬幣4次,設2枚硬幣正好出現(xiàn)1枚正面向上、1枚反面向上的次數(shù)為X,則X的數(shù)學期望是(  )
A.1B.$\frac{3}{2}$C.2D.$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知單調(diào)遞增的等差數(shù)列{an},滿足|a10•a11|>a10•a11,且a102<a112,Sn為其前n項和,則( 。
A.a8+a12>0
B.S1,S2,…S19都小于零,S10為Sn的最小值
C.a8+a13<0
D.S1,S2,…S20都小于零,S10為Sn的最小值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.若一個三位數(shù)的十位數(shù)數(shù)字比個位數(shù)字和百位數(shù)字都大,則稱這個數(shù)為“凸數(shù)”,現(xiàn)從1,2,3,4,5,這五個數(shù)字中任取3個數(shù),組成無重復數(shù)字的三位數(shù),其中“凸數(shù)”有( 。
A.120個B.80個C.40個D.20個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知函數(shù)f(x)=$\sqrt{3}$sinωxcosωx+cos2ωx+a(ω>0),其圖象相鄰對稱軸之間的距離為$\frac{π}{2}$,f(x)的最大值為$\frac{1}{2}$.
(Ⅰ)求ω和a;
(Ⅱ)將函數(shù)y=f(x)的圖象向左平移$\frac{π}{24}$個單位,再將所得圖象上各點的橫坐標伸長為原來的4倍,縱坐標不變,得到函數(shù)y=g(x)的圖象,求g(x)在[0,3π]上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.函數(shù)F(x)=(2x-2-x)•f(x),F(xiàn)(x)為偶函數(shù),則函數(shù)f(x)為(  )
A.偶函數(shù)B.奇函數(shù)C.非奇非偶函數(shù)D.既奇又偶函數(shù)

查看答案和解析>>

同步練習冊答案