3.已知△ABC的內(nèi)角A,B,C的對(duì)邊分別是a,b,c,若A=$\frac{π}{3}$,則$\frac{^{2}+{c}^{2}-{a}^{2}}{bc}$的值為( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.1D.$\sqrt{3}$

分析 由已知利用余弦定理即可計(jì)算得解.

解答 解:∵A=$\frac{π}{3}$,
∴cosA=$\frac{1}{2}$=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{1}{2}$•$\frac{^{2}+{c}^{2}-{a}^{2}}{bc}$,
∴$\frac{^{2}+{c}^{2}-{a}^{2}}{bc}$=1.
故選:C.

點(diǎn)評(píng) 本題主要考查了余弦定理在解三角形中的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知△AOB中,∠AOB=120°,|$\overrightarrow{OA}$|=3,|$\overrightarrow{OB}$|=2,過(guò)O作OD垂直AB于點(diǎn)D,點(diǎn)E為線段OD的中點(diǎn),則$\overrightarrow{OE}$•$\overrightarrow{EA}$的值為( 。
A.$\frac{5}{19}$B.$\frac{27}{76}$C.$\frac{3}{76}$D.$\frac{3}{19}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.在數(shù)列{an}中,已知a1=0,an+2-an=2,則a7的值為(  )
A.9B.15C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,且(n+1)an=2Sn(n∈N*),數(shù)列{bn}滿足${b_1}=\frac{1}{2}$,${b_2}=\frac{1}{4}$,對(duì)任意n∈N*,都有$b_{n+1}^2=b{\;}_n{b_{n+2}}$.
(1)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(2)令Tn=a1b1+a2b2+…+anbn.若對(duì)任意的n∈N*,不等式λnTn+2bnSn<2(λn+3bn)恒成立,試求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知自然數(shù)x滿足3A${\;}_{x+1}^{3}$-2A${\;}_{x+2}^{2}$=6A${\;}_{x+1}^{2}$,則x( 。
A.3B.5C.4D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.在△ABC 中,角A,B,C所對(duì)的邊分別為a,b,c,且asin Acos C+csin AcosA=$\frac{1}{3}$c
(1)若c=1,sin C=$\frac{1}{3}$,求△ABC的面積S
(2)若D 是AC的中點(diǎn)•且cosB=$\frac{2\sqrt{5}}{5}$,BD=$\sqrt{26}$,求△ABC的最短邊的邊長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖所示,在等腰梯形ABCD中,AD∥BC,AD=CD=AB,∠ABC=60°,將三角形ABD沿BD折起,使點(diǎn)A在平面BCD上的投影G落在BD上.
(1)求證:平面ACD⊥平面ABD;
(2)求二面角G-AC-D的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=x2-2x+mlnx(m∈R),$g(x)=(x-\frac{3}{4}){e^x}$.
(1)求函數(shù)f(x)的單調(diào)性;
(2)若f(x)存在兩個(gè)極值點(diǎn)x1,x2(x1<x2),求g(x1-x2)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖所示,在四棱錐E-ABCD中,ABCD是邊長(zhǎng)為2的正方形,且AE⊥平面CDE,且∠DAE=30°
(1)求證:平面ABE⊥平面ADE
(2)求點(diǎn)A到平面BDE的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案