【題目】已知定義在R上的偶函數(shù)f(x)滿足f(x+1)=﹣f(x),且當(dāng)x∈[﹣1,0]時, ,函數(shù) ,則關(guān)于x的不等式f(x)<g(x)的解集為( )
A.(﹣2,﹣1)∪(﹣1,0)
B.
C.
D.
【答案】D
【解析】解:由題意知,f(x+1)=﹣f(x),
∴f(x+2)=﹣f(x+1)=f(x),
即函數(shù)f(x)是周期為2的周期函數(shù).
若x∈[0,1]時,﹣x∈[﹣1,0],
∵當(dāng)x∈[﹣1,0]時, ,
∴當(dāng)x∈[0,1]時, ,
∵f(x)是偶函數(shù),∴f(x)= ,
即f(x)= .
∵函數(shù) ,
∴g(x)= ,
作出函數(shù)f(x)和g(x)的圖象如圖:
當(dāng)﹣1<x<0時,由 = ,
則 ,由選項驗證解得x= ,
即此時不等式式f(x)<g(|x+1|)的解為﹣1<x< ,
∵函數(shù)g(x)關(guān)于x=﹣1對稱,
∴不等式式f(x)<g(x)的解為﹣1<x< 或 <x<﹣1,
即不等式的解集為( ,﹣1)∪(﹣1, ),
故選:D.
【考點精析】本題主要考查了奇偶性與單調(diào)性的綜合的相關(guān)知識點,需要掌握奇函數(shù)在關(guān)于原點對稱的區(qū)間上有相同的單調(diào)性;偶函數(shù)在關(guān)于原點對稱的區(qū)間上有相反的單調(diào)性才能正確解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,滿足下列條件的有兩個的是( )
A.
B.
C.a=1,b=2,c=3
D.a=3,b=2,A=60°
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方體ABCD-A1B1C1D1 , O是底面ABCD對角線的交點.
求證:(I) C1O∥面AB1D1;
(II)面A1C⊥面AB1D1 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}是公比不為1的等比數(shù)列,a1=1,且a1 , a3 , a2成等差數(shù)列.
(1)求數(shù)列{an}的通項;
(2)若數(shù)列{an}的前n項和為Sn , 試求Sn的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2sin(ωx+φ), 的最小正周期為π,且圖象關(guān)于x= 對稱.
(1)求ω和φ的值;
(2)將函數(shù)f(x)的圖象上所有橫坐標(biāo)伸長到原來的4倍,再向右平移 個單位得到函數(shù)g(x)的圖象,求g(x)的單調(diào)遞增區(qū)間以及g(x)≥1的x取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)為R上的偶函數(shù),g(x)為R上的奇函數(shù),且f(x)+g(x)=log4(4x+1).
(1)求f(x),g(x)的解析式;
(2)若函數(shù)h(x)=f(x)﹣ 在R上只有一個零點,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C對邊的邊長分別是a,b,c,已知c=2, .
(1)若△ABC的面積等于 ,求a,b;
(2)若sinB=2sinA,求△ABC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com