在△ABC中,角A、B、C所對的邊分別是a、b、c,已知cos
C
2
=
5
3

(I)求cosC的值;
(II)若acosB+bcosA=2,求△ABC面積的最大值.
分析:(I)所求的式子cosC利用二倍角的余弦函數(shù)公式化簡后,將已知的cos
C
2
的值代入即可求出值;
(II)利用余弦定理分別表示出cosB和cosA,代入到已知的等式中,化簡后即可求出c的值,然后利用余弦定理表示出c2=a2+b2-2abcosC,把c及cosC的值代入后,利用基本不等式即可求出ab的最大值,然后由cosC的值,及C的范圍,利用同角三角函數(shù)間的基本關(guān)系求出sinC的值,利用三角形的面積公式表示出三角形ABC的面積,把ab的最大值及sinC的值代入即可求出面積的最大值.
解答:解:(Ⅰ)∵cos
C
2
=
5
3
,
cosC=2cos2
C
2
-1=2(
5
3
)2-1=
1
9
;(7分)
(Ⅱ)∵acosB+bcosA=2,
a2+c2-b2
2ac
+b×
c2+b2-a2
2bc
=2
,
∴c=2(9分)
4=a2+b2-2ab×
1
9
≥2ab-2ab×
1
9
=
16
9
ab
,
ab≤
9
4
(當且僅當a=b=
3
2
時等號成立)(12分)
由cosC=
1
9
,得sinC=
4
5
9
(13分)
S△ABC=
1
2
absinC≤
1
2
×
9
4
×
4
5
9
=
5
2
,
故△ABC的面積最大值為
5
2
(14分)
點評:此題考查了二倍角的余弦函數(shù)公式,基本不等式,余弦定理及三角形的面積公式.熟練掌握公式及定理是解本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A、B、C所對的邊分別為a,b,c,若b2+c2-a2=
3
bc
,且b=
3
a
,則下列關(guān)系一定不成立的是( 。
A、a=c
B、b=c
C、2a=c
D、a2+b2=c2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C的對邊分別為a,b,c,已知B=60°,cos(B+C)=-
1114

(1)求cosC的值;
(2)若bcosC+acosB=5,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C的對邊分別是a,b,c,且bsinA=
3
acosB

(1)求角B的大小;
(2)若a=4,c=3,D為BC的中點,求△ABC的面積及AD的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A、B、C所對的邊分別為a、b、c并且滿足
b
a
=
sinB
cosA

(1)求∠A的值;
(2)求用角B表示
2
sinB-cosC
,并求它的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C所對邊的長分別為a,b,c,且a=
5
,b=3,sinC=2sinA
,則sinA=
 

查看答案和解析>>

同步練習冊答案