等差數(shù)列{an}中,a4=10且a3,a6,a10成等比數(shù)列,求數(shù)列{an}前20項的和S20.
【答案】
分析:先設(shè)數(shù)列{a
n}的公差為d,根據(jù)a
3,a
6,a
10成等比數(shù)列可知a
3a
10=a
62,把d和a
4代入求得d的值.再根據(jù)a
4求得a
1,最后把d和a
1代入S
20即可得到答案.
解答:解:設(shè)數(shù)列{a
n}的公差為d,則a
3=a
4-d=10-d,a
6=a
4+2d=10+2d,a
10=a
4+6d=10+6d.
由a
3,a
6,a
10成等比數(shù)列得a
3a
10=a
62,
即(10-d)(10+6d)=(10+2d)
2,
整理得10d
2-10d=0,
解得d=0或d=1.
當d=0時,S
20=20a
4=200.
當d=1時,a
1=a
4-3d=10-3×1=7,
于是
=20×7+190=330.
點評:本題主要考查了等差數(shù)列和等比數(shù)列的性質(zhì).屬基礎(chǔ)題.