已知△ABC的三邊長(zhǎng)分別為a,b,c,其面積為S,則△ABC的內(nèi)切圓的半徑r=
2Sa+b+c
.這是一道平面幾何題,請(qǐng)用類(lèi)比推理方法,猜測(cè)對(duì)空間四面體ABCD存在什么類(lèi)似結(jié)論?
 
分析:根據(jù)平面與空間之間的類(lèi)比推理,由點(diǎn)類(lèi)比點(diǎn)或直線(xiàn),由直線(xiàn) 類(lèi)比 直線(xiàn)或平面,由內(nèi)切圓類(lèi)比內(nèi)切球,由平面圖形面積類(lèi)比立體圖形的體積,結(jié)合求三角形的面積的方法類(lèi)比求四面體的體積即可.
解答:精英家教網(wǎng)解:設(shè)四面體的內(nèi)切球的球心為O,
則球心O到四個(gè)面的距離都是R,
所以四面體的體積等于以O(shè)為頂點(diǎn),
分別以四個(gè)面為底面的4個(gè)三棱錐體積的和.
則四面體的體積為 V四面體A-BCD=
1
3
(S1+S2+S3+S4

猜想:四面體ABCD的各表面面積分別為S1,S2,S3,S4,其體積為V,
則四面體ABCD的內(nèi)切球半徑r=
3V
S1+S2+S3+S4

故答案為:r=
3V
S1+S2+S3+S4
點(diǎn)評(píng):本題主要考查類(lèi)比推理.類(lèi)比推理是指依據(jù)兩類(lèi)數(shù)學(xué)對(duì)象的相似性,將已知的一類(lèi)數(shù)學(xué)對(duì)象的性質(zhì)類(lèi)比遷移到另一類(lèi)數(shù)學(xué)對(duì)象上去.一般步驟:①找出兩類(lèi)事物之間的相似性或者一致性.②用一類(lèi)事物的性質(zhì)去推測(cè)另一類(lèi)事物的性質(zhì),得出一個(gè)明確的命題(或猜想).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的三邊長(zhǎng)a,b,c滿(mǎn)足b+2c≤3a,c+2a≤3b,則
ba
的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的三邊長(zhǎng)為a、b、c,滿(mǎn)足直線(xiàn)ax+by+c=0與圓x2+y2=1相離,則△ABC是( 。
A、銳角三角形B、直角三角形C、鈍角三角形D、以上情況都有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的三邊長(zhǎng)為三個(gè)連續(xù)的正整數(shù),且最大角為鈍角,則最長(zhǎng)邊長(zhǎng)為
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的三邊長(zhǎng)AC=3,BC=4,AB=5,P為AB邊上任意一點(diǎn),則
CP
•(
BA
-
BC
)
的最大值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案