本小題滿分16分)

已知函數(shù)是自然對數(shù)的底數(shù)).

(1)若曲線處的切線也是拋物線的切線,求的值;

(2)若對于任意恒成立,試確定實數(shù)的取值范圍;

(3)當(dāng)時,是否存在,使曲線在點處的切線斜率與 在上的最小值相等?若存在,求符合條件的的個數(shù);若不存在,請說明理由.

 

【答案】

解:(1),所以在處的切線為

即:                          ………………………………2分

聯(lián)立,消去

知,.        ………………………………4分

(2)

①當(dāng)時,上單調(diào)遞增,且當(dāng)時,,

,故不恒成立,所以不合題意 ;………………6分

②當(dāng)時,恒成立,所以符合題意;

③當(dāng)時令,得, 當(dāng)時,

當(dāng)時,,故上是單調(diào)遞減,在上是單調(diào)遞增, 所以

綜上:.                 ………………………………10分

(3)當(dāng)時,由(2)知

設(shè),則

假設(shè)存在實數(shù),使曲線在點處的切線斜率與上的最小值相等,即為方程的解,………………………………13分

得:,因為, 所以.

,則 ,

當(dāng),當(dāng),所以上單調(diào)遞減,在上單調(diào)遞增,,故方程 有唯一解為1,

所以存在符合條件的,且僅有一個.  …………………………16分

 

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2010江蘇卷)18、(本小題滿分16分)

在平面直角坐標(biāo)系中,如圖,已知橢圓的左、右頂點為A、B,右焦點為F。設(shè)過點T()的直線TA、TB與橢圓分別交于點M,其中m>0,

(1)設(shè)動點P滿足,求點P的軌跡;

(2)設(shè),求點T的坐標(biāo);

(3)設(shè),求證:直線MN必過x軸上的一定點(其坐標(biāo)與m無關(guān))。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年泰州中學(xué)高一下學(xué)期期末測試數(shù)學(xué) 題型:解答題

(本小題滿分16分)
函數(shù)(),
A=
(Ⅰ)求集合A;
(Ⅱ)如果,對任意時,恒成立,求實數(shù)的范圍;
(Ⅲ)如果,當(dāng)“對任意恒成立”與“內(nèi)必有解”同時成立時,求 的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆江蘇大豐新豐中學(xué)高二上期中考試文數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分16分)     本題請注意換算單位

某開發(fā)商用9000萬元在市區(qū)購買一塊土地建一幢寫字樓,規(guī)劃要求寫字樓每層建筑面積為2000平方米。已知該寫字樓第一層的建筑費用為每平方米4000元,從第二層開始,每一層的建筑費用比其下面一層每平方米增加100元。

(1)若該寫字樓共x層,總開發(fā)費用為y萬元,求函數(shù)y=f(x)的表達(dá)式;

(總開發(fā)費用=總建筑費用+購地費用)

(2)要使整幢寫字樓每平方米開發(fā)費用最低,該寫字樓應(yīng)建為多少層?

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆安徽省蚌埠市高二下學(xué)期期中聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分16分)設(shè)命題:方程無實數(shù)根; 命題:函數(shù)

的值域是.如果命題為真命題,為假命題,求實數(shù)的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年江蘇省高一第三階段檢測數(shù)學(xué)卷 題型:解答題

(本小題滿分16分)

已知函數(shù)f(x)=為偶函數(shù),且函數(shù)yf(x)圖象的兩相鄰對稱軸間的距離為

(Ⅰ)求f)的值;

(Ⅱ)將函數(shù)yf(x)的圖象向右平移個單位后,再將得到的圖象上各點的橫坐標(biāo)延長到原來的4倍,縱坐標(biāo)不變,得到函數(shù)yg(x)的圖象,求g(x)的單調(diào)遞減區(qū)間.

 

查看答案和解析>>

同步練習(xí)冊答案