【題目】若a,b 是函數(shù) 的兩個不同的零點,且a,b,-2 這三個數(shù)可適當排序后成等差數(shù)列,也可適當排序后成等比數(shù)列,則p+q 的值等于( )
A.6
B.7
C.8
D.9

【答案】D
【解析】由韋達定理得a+b=p,a·b=q,則a>0,b>0,當a,b,-2適當排序后成等比數(shù)列時,-2必為等比數(shù)列,故a·b=q=4,b=,當適當排序后成等差數(shù)列時,-2必不是等差中項,當a是等差中時,2a=-2,解得a=1,b=4;當是等差中項時,=a-2,解得a=4,b=1,綜上所述,a+b=p=5,所以p+q=9,故選D.
【考點精析】解答此題的關(guān)鍵在于理解等差數(shù)列的通項公式(及其變式)的相關(guān)知識,掌握通項公式:,以及對等比數(shù)列的通項公式(及其變式)的理解,了解通項公式:

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖四面體ABCD中,△ABC是正三角形,AD=CD.(12分)
(1)證明:AC⊥BD;
(2)已知△ACD是直角三角形,AB=BD,若E為棱BD上與D不重合的點,且AE⊥EC,求四面體ABCE與四面體ACDE的體積比.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在棱錐中,側(cè)面是邊長為2的正三角形,底面是菱形,且,的中點,二面角.

(1)求證:平面

(2)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè){an}是等比數(shù)列,則下列結(jié)論中正確的是( )

A. 若a1=1,a5=4,則a3=﹣2

B. 若a1+a3>0,則a2+a4>0

C. 若a2>a1,則a3>a2

D. 若a2>a1>0,則a1+a3>2a2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱臺ABC﹣A1B1C1中,D,E分別是AB,AC的中點,B1E⊥平面ABC,△AB1C是等邊三角形,AB=2A1B1,AC=2BC,∠ACB=90°.

(1)證明:B1C∥平面A1DE;

(2)求二面角A﹣BB1﹣C的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(1)已知x>0,y>0,x+y+xy=8,則x+y的最小值?

(2)已知不等式的解集為{x|a≤x<b},點(a,b)在直線mx+ny+1=0上,其中m,n>0,若對任意滿足條件的m,n,恒有成立,則λ的取值范圍?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左右兩個焦點為,離心率為,過點.

(1)求橢圓C的標準方程;

(2)設(shè)直線與橢圓C相交于兩點,橢圓的左頂點為,連接并延長交直線兩點 ,分別為的縱坐標,且滿足.求證:直線過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)
(1)若 ,求函數(shù) 處的切線方程
(2)設(shè)函數(shù) ,求 的單調(diào)區(qū)間.
(3)若存在 ,使得 成立,求 的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知P是直線上的動點,過點P作圓的兩條切線,A,B是切點,C是圓心,若四邊形PACB面積的最小值為2,則的值為(  )

A. 3 B. 2 C. D.

查看答案和解析>>

同步練習冊答案