設(shè)x,y滿足約束條件
x+y≤3
y≤2x
y≥0
,則目標(biāo)函數(shù)z=2x+y的最大值是( 。
A.3B.4C.5D.6
滿足約束條件
x+y≤3
y≤2x
y≥0
的平面區(qū)域如下圖所示:
平移直線y=-2x
由圖易得,當(dāng)x=3,y=0時(shí),目標(biāo)函數(shù)z=2x+y的最大值為6
故選D.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知
2x+y-5≥0
3x-y-5≤0
x-2y+5≥0
,則z=(x+1)2+(y+1)2的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

二元一次不等式組
x+y≤1
x≥0
y≥0
表示的平面區(qū)域的面積是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某汽車公司有兩家裝配廠,生產(chǎn)甲、乙兩種不同型號(hào)的汽車,若A廠每小時(shí)可完成1輛甲型車和2輛乙型車;B廠每小時(shí)可完成3輛甲型車和1輛乙型車.今欲制造40輛甲型車和20輛乙型車,問(wèn)這兩家工廠各工作幾小時(shí),才能使所費(fèi)的總工作時(shí)數(shù)最少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如果實(shí)數(shù)xy滿足不等式組
x-y+1≤0,x≥1
2x-y-2≤0
,則x2+y2的最小值是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知不等式組
y≤-x+2
y≤kx-1
y≥0
所表示的平面區(qū)域?yàn)槊娣e等于
1
4
的三角形,則實(shí)數(shù)k的值為(  )
A.-1B.-
1
2
C.
1
2
D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某校在籌備校運(yùn)會(huì)時(shí)欲制作會(huì)徽,準(zhǔn)備向全校學(xué)生征集設(shè)計(jì)方案,某學(xué)生在設(shè)計(jì)中需要相同的三角形紙片7張,四邊形紙片6張,五邊形形紙片9張,而這些紙片必須從A、B兩種規(guī)格的紙中裁取,具體如下:
三角形紙片(張)四邊形紙片(張)五邊形紙片(張)
A型紙(每張可同時(shí)裁。113
B型紙(每張可同時(shí)裁取)211
(普通中學(xué)學(xué)生做)若每張A、B型紙的價(jià)格分別為3元與4元,試設(shè)計(jì)一種買紙方案,使該學(xué)生在制作時(shí)買紙的費(fèi)用最省,并求此最省費(fèi)用.
(重點(diǎn)中學(xué)學(xué)生做)若每張A、B型紙的價(jià)格分別為4元與3元,試設(shè)計(jì)一種買紙方案,使該學(xué)生在制作時(shí)買紙的費(fèi)用最省,并求此最省費(fèi)用.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

點(diǎn)(a,1)在直線x-2y+4=0的右下方,則a的取值范圍是( 。
A.(-2,+∞)B.(-∞,-2)C.(1,+∞)D.(-∞,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

點(diǎn)P(x,y)在不等式組
x≥0
x+y≤3
y≥x+1
表示的平面區(qū)域內(nèi),若點(diǎn)P(x,y)到直線y=kx-1的最大距離為2
2
,則k=______.

查看答案和解析>>

同步練習(xí)冊(cè)答案