精英家教網 > 高中數學 > 題目詳情

【題目】在直角坐標系中,長為3的線段的兩端點分別在軸、軸上滑動,點為線段上的點,且滿足.記點的軌跡為曲線.

1)求曲線的方程;

2)若點為曲線上的兩個動點,記,判斷是否存在常數使得點到直線的距離為定值?若存在,求出常數的值和這個定值;若不存在,請說明理由.

【答案】12)存在;常數,定值

【解析】

1)設出的坐標,利用以及,求得曲線的方程.

2)當直線的斜率存在時,設出直線的方程,求得到直線的距離.聯(lián)立直線的方程和曲線的方程,寫出根與系數關系,結合以及為定值,求得的值.當直線的斜率不存在時,驗證.由此得到存在常數,且定值.

1)解析:(1)設,,

由題可得

,解得

,即

消去得:

2)當直線的斜率存在時,設直線的方程為

可得:

由點的距離為定值可得為常數)即

得:

,

為定值時,,此時,且符合

當直線的斜率不存在時,設直線方程為

由題可得時,,經檢驗,符合條件

綜上可知,存在常數,且定值

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】三棱錐P ABC中,PA⊥平面ABC,Q是BC邊上的一個動點,且直線PQ與面ABC所成角的最大值為則該三棱錐外接球的表面積為(  )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在全面抗擊新冠肺炎疫情這一特殊時期,我市教育局提出停課不停學的口號,鼓勵學生線上學習.某校數學教師為了調查高三學生數學成績與線上學習時間之間的相關關系,對高三年級隨機選取45名學生進行跟蹤問卷,其中每周線上學習數學時間不少于5小時的有19人,余下的人中,在檢測考試中數學平均成績不足120分的占,統(tǒng)計成績后得到如下列聯(lián)表:

分數不少于120

分數不足120

合計

線上學習時間不少于5小時

4

19

線上學習時間不足5小時

合計

45

1)請完成上面列聯(lián)表;并判斷是否有99%的把握認為高三學生的數學成績與學生線上學習時間有關;

2)在上述樣本中從分數不少于120分的學生中,按照分層抽樣的方法,抽到線上學習時間不少于5小時和線上學習時間不足5小時的學生共5名,若在這5名學生中隨機抽取2人,求至少1人每周線上學習時間不足5小時的概率.

(下面的臨界值表供參考)

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式 其中

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,為自然對數的底數).

1)討論函數在定義域內極值點的個數;

2)設直線為函數的圖象上一點處的切線,證明:在區(qū)間上存在唯一的,使得直線與曲線相切.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知六面體如圖所示,平面,,,是棱上的點,且滿足.

1)求證:直線平面

2)求二面角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】港珠澳大橋是中國境內一座連接中國香港、廣東珠海和中國澳門的橋隧工程,因其超大的建筑規(guī)模、空前的施工難度以及頂尖的建造技術聞名世界,為內地前往香港的游客提供了便捷的交通途徑,某旅行社分年齡統(tǒng)計了大橋落地以后,由香港大橋實現內地前往香港的老中青旅客的比例分別為,現使用分層抽樣的方法從這些旅客中隨機抽取名,若青年旅客抽到60人,則(

A.老年旅客抽到150B.中年旅客抽到20

C.D.被抽到的老年旅客以及中年旅客人數之和超過200

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知P,A,B,C是半徑為2的球面上的點,PA=PB=PC=2,,點BAC上的射影為D,則三棱錐體積的最大值為( )

A.B.C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數.

1)討論函數的單調性;

2)若關于x的方程有唯一的實數解,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知四棱錐中,側面底面,是邊長為2的正三角形底面是菱形,點的中點

1)求證:平面;

2)求二面角的余弦值.

查看答案和解析>>

同步練習冊答案