根據(jù)輾轉(zhuǎn)相除法可知,65與169的最大公約數(shù)是
 
考點(diǎn):用輾轉(zhuǎn)相除計(jì)算最大公約數(shù)
專題:算法和程序框圖
分析:本題考查的知識(shí)點(diǎn)是輾轉(zhuǎn)相除法,根據(jù)輾轉(zhuǎn)相除法的步驟,將65與169代入易得到答案.
解答: 解:∵169=2×65+39;
65=1×39+26,
39=1×26+13,
26=2×13
故65與169的最大公約數(shù)是13,
故答案為:13
點(diǎn)評:對任意整數(shù)a,b,b>0,存在唯一的整數(shù)q,r,使a=bq+r,其中0≤r<b,這個(gè)事實(shí)稱為帶余除法定理,若c|a,c|b,則稱c是a,b的公因數(shù).若d是a,b的公因數(shù),且d可被a,b的任意公因數(shù)整除則稱d是a,b的最大公因數(shù).當(dāng)d≥0時(shí),d是a,b公因數(shù)中最大者.若a,b的最大公因數(shù)等于1,則稱a,b互素.累次利用帶余除法可以求出a,b的最大公因數(shù),這種方法常稱為輾轉(zhuǎn)相除法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知圓C:(x-1)2+y2=r2(r>1),設(shè)A為圓C與x軸負(fù)半軸的交點(diǎn),過點(diǎn)A作圓C的弦AM,并使弦AM的中點(diǎn)恰好落在y軸上.
(1)當(dāng)r在(1,+∞)內(nèi)變化時(shí),求點(diǎn)M的軌跡E的方程;
(2)已知定點(diǎn)P(-1,1)和Q(1,0),設(shè)直線PM、QM與軌跡E的另一個(gè)交點(diǎn)分別是M1、M2.求證:當(dāng)M點(diǎn)在軌跡E上變動(dòng)時(shí),只要M1、M2都存在且M1≠M(fèi)2,則直線M1M2恒過一個(gè)定點(diǎn),并求出這個(gè)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,且對任意的n∈N*,都有Sn=2n+1-2;
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=(3n-1)•an,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,數(shù)列{Sn+1}是公比為2的等比數(shù)列,a2是a1和a1=S1=4的等比中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{nan}的前n項(xiàng)和Tn(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x-2)=2x,則f(3)的值為(  )
A、64B、8C、16D、32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的不等式(ax-a2-4)(x+1)<0的解集為A,且A中共含有n個(gè)整數(shù),則當(dāng)n最小時(shí),實(shí)數(shù)a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2-4ax+c,(a<0),當(dāng)f(m)≥f(0)時(shí),實(shí)數(shù)m滿足的取值范圍是( 。
A、(-∞,0]∪[4,+∞)
B、[0,4]
C、(0,4)
D、(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)樣本數(shù)據(jù)x1,x2,…,xn的平均值為1,若yi=xi+a(a為非零常數(shù),i=1,2,…,n),則y1,y2,…,yn的平均值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若冪函數(shù)f(x)的圖象過點(diǎn)(2,
2
2
),則f(x)=
 

查看答案和解析>>

同步練習(xí)冊答案