(2012•浦東新區(qū)三模)已知函數(shù)y=f(x),x∈D,y∈A;g(x)=x2-(4
7
tanθ)x+1,
(1)當(dāng)f(x)=sin(x+φ)為偶函數(shù)時,求φ的值.
(2)當(dāng)f(x)=sin(2x+
π
6
)+
3
sin(2x+
π
3
)時,g(x)在A上是單調(diào)遞減函數(shù),求θ的取值范圍.
(3)當(dāng)f(x)=m•sin(ωx+φ1)時,(其中m∈R且m≠0,ω>0),函數(shù)f(x)的圖象關(guān)于點(diǎn)(
π
2
,0)對稱,又關(guān)于直線x=π成軸對稱,試探討ω應(yīng)該滿足的條件.
分析:(1)由函數(shù)f(x)=sin(x+φ)為偶函數(shù),可得 2sinxcosφ=0,故cosφ=0,由此可得φ 的值.
(2)化簡 函數(shù)f(x)的解析式為
7
sin(2x+α)∈[-
7
,
7
],A=[-
7
,
7
].化簡g(x)=(x-2
7
tanθ)
2
+1-28tan2θ,由題意可知:2
7
tanθ≥
7
,tanθ≥
1
2
,由此可得θ的取值范圍.
(3)由條件得 (2n-1)
T
4
=π-
π
2
,再由n∈N*,(2n-1)
π
=
π
2
,可得ω=2n-1.由f(x)的圖象關(guān)于點(diǎn)(
π
2
,0)對稱求得ωx+φ1 =kπ+
π
2
,可得φ1 =kπ+
π
2
.再由f(x)的圖象關(guān)于直線x=π成軸對稱,所以 sin(πω+φ1 )=±1,可得 πφ+kπ+
π
2
=k′π+
π
2
,k′∈z,由此求得ω 滿足的條件.
解答:解:(1)因?yàn)楹瘮?shù)f(x)=sin(x+φ)為偶函數(shù),所以,sin(x+φ)=sin(-x+φ),
化簡為 2sinxcosφ=0,∴cosφ=0,所以φ=kπ+
π
2
,k∈z…(4分)
(2)∵函數(shù)f(x)=sin(2x+
π
6
)+
3
sin(2x+
π
3
)=
3
sin2x+2cos2x=
7
sin(2x+α)∈[-
7
,
7
],
其中,sinα=
2
7
,cosα=
3
7
,所以 A=[-
7
,
7
]…(8分)
g(x)=x2-(4
7
tanθ)x+1=(x-2
7
tanθ)
2
+1-28tan2θ,
由題意可知:2
7
tanθ≥
7
,tanθ≥
1
2
,∴kπ+arctan
1
2
≤θ≤kπ+
π
2
,k∈z,
即θ的取值范圍是[kπ+arctan
1
2
,kπ+
π
2
],k∈z.(10分)
(3)由f(x)的圖象關(guān)于點(diǎn)(
π
2
,0)對稱,又關(guān)于直線x=π成軸對稱,故(2n-1)
T
4
=π-
π
2
.…(12分)
再由n∈N*,(2n-1)
π
=
π
2
,所以,ω=2n-1,①(14分)
由f(x)的圖象關(guān)于點(diǎn)(
π
2
,0)對稱知道 sin(
π
2
ω+φ1)=0,∴ωx+φ1 =kπ+
π
2
,
π
2
(2n-1)+φ1 =kπ,k∈z,φ1 =kπ+
π
2

又因?yàn)閒(x)的圖象關(guān)于直線x=π成軸對稱,所以 sin(πω+φ1 )=±1,
∴πφ+kπ+
π
2
=k′π+
π
2
,k′∈z,所以,ω=k,k∈N* ②.(16分)
由①②可知,ω=2n-1,n∈N*. (18分)
點(diǎn)評:本題主要考查三角函數(shù)的恒等變換及化簡求值,復(fù)合三角函數(shù)的單調(diào)性,由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,
屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•浦東新區(qū)一模)函數(shù)y=
log2(x-2) 
的定義域?yàn)?!--BA-->
[3,+∞)
[3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•浦東新區(qū)一模)若X是一個非空集合,M是一個以X的某些子集為元素的集合,且滿足:
①X∈M、∅∈M;
②對于X的任意子集A、B,當(dāng)A∈M且B∈M時,有A∪B∈M;
③對于X的任意子集A、B,當(dāng)A∈M且B∈M時,A∩B∈M;
則稱M是集合X的一個“M-集合類”.
例如:M={∅,,{c},{b,c},{a,b,c}}是集合X={a,b,c}的一個“M-集合類”.已知集合X={a,b,c},則所有含{b,c}的“M-集合類”的個數(shù)為
10
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•浦東新區(qū)二模)手機(jī)產(chǎn)業(yè)的發(fā)展催生了網(wǎng)絡(luò)新字“孖”.某學(xué)生準(zhǔn)備在計算機(jī)上作出其對應(yīng)的圖象,其中A(2,2),如圖所示.在作曲線段AB時,該學(xué)生想把函數(shù)y=x
1
2
,x∈[0,2]
的圖象作適當(dāng)變換,得到該段函數(shù)的曲線.請寫出曲線段AB在x∈[2,3]上對應(yīng)的函數(shù)解析式
y=
2
(x-2)
1
2
+2
y=
2
(x-2)
1
2
+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•浦東新區(qū)一模)設(shè)復(fù)數(shù)z滿足|z|=
10
,且(1+2i)z(i是虛數(shù)單位)在復(fù)平面上對應(yīng)的點(diǎn)在直線y=x上,求z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•浦東新區(qū)二模)已知z=
1
1+i
,則
.
z
=
1
2
+
1
2
i
1
2
+
1
2
i

查看答案和解析>>

同步練習(xí)冊答案