【題目】在△ABC中,已知內(nèi)角AB,C所對(duì)的邊分別為a,b,c,向量m=(2sin B,- ),n,且mn.

(1)求銳角B的大;

(2)如果b=2,求△ABC的面積SABC的最大值.

【答案】(1) ;(2) .

【解析】試題分析:(1)由向量共線的坐標(biāo)表示,代入用二倍角公式化簡(jiǎn)得出角B;(2)由余弦定理結(jié)合基本不等式,得到ac的最大值,代入求出三角形面積的最大值.

試題解析:

(1)因?yàn)?/span>m=(2sin B,-),n,

mn.

所以2sin B=-cos 2B,

所以tan 2B=-.

又因?yàn)榻?/span>B為銳角,

所以2B,即B.

(2)已知b=2,由余弦定理,得:

4=a2c2ac≥2acacac(當(dāng)且僅當(dāng)ac=2時(shí)等號(hào)成立).

因?yàn)椤?/span>ABC的面積SABCacsin Bac,

所以△ABC的面積SABC的最大值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l經(jīng)過直線2x+y﹣5=0與x﹣2y=0的交點(diǎn),且點(diǎn)A(5,0)到l的距離為3,則直線l的方程為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)矩形ABCD(AB>AD)的周長(zhǎng)為24,把△ABC沿AC向△ADC折疊,AB折過去后交DC于點(diǎn)P,設(shè)AB=x,求△ADP的最大面積及相應(yīng)x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位名員工參加“我愛閱讀”活動(dòng),他們的年齡在25歲至50歲之間,按年齡分組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示.

(I)現(xiàn)要從年齡低于40歲的員工中用分層抽樣的方法抽取12人,則年齡在第組的員工人數(shù)分別是多少?

(II)為了交流讀書心得,現(xiàn)從上述人中再隨機(jī)抽取人發(fā)言,設(shè)人中年齡在的人數(shù)為,求的數(shù)學(xué)期望;

(III)為了估計(jì)該單位員工的閱讀傾向,現(xiàn)對(duì)從該單位所有員工中按性別比例抽取的40人做是否喜歡閱讀國(guó)學(xué)類書籍進(jìn)行調(diào)查,調(diào)查結(jié)果如下表所示:(單位:人)

喜歡閱讀國(guó)學(xué)類

不喜歡閱讀國(guó)學(xué)類

合計(jì)

14

4

18

8

14

22

合計(jì)

22

18

40

根據(jù)表中數(shù)據(jù),我們能否有的把握認(rèn)為該單位員工是否喜歡閱讀國(guó)學(xué)類書籍和性別有關(guān)系?

附:,其中

0.05

0.025

0.010

0.005

0.001

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某家具廠有方木料,五合板,準(zhǔn)備加工成書桌和書櫥出售.已知生產(chǎn)每張書桌需要方木料,五合板,生產(chǎn)每個(gè)書櫥需要方木料,五合板,出售一張書桌可獲利潤(rùn)元,出售一個(gè)書櫥可獲利潤(rùn)元.

1)如果只安排生產(chǎn)書桌,可獲利潤(rùn)多少?

2)如果只安排生產(chǎn)書櫥,可獲利潤(rùn)多少?

3)怎樣安排生產(chǎn)可使所得利潤(rùn)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用分期付款的方式購(gòu)買某家用電器一件,價(jià)格為1 150元,購(gòu)買當(dāng)天先付150元,以后每月這一天還款一次,每次還款數(shù)額相同,20個(gè)月還清,月利率為1%,按復(fù)利計(jì)算.若交付150元后的第一個(gè)月開始算分期付款的第一個(gè)月,全部欠款付清后,請(qǐng)問買這件家電實(shí)際付款多少元?每月還款多少元?(最后結(jié)果保留4個(gè)有效數(shù)字)

參考數(shù)據(jù):(1+1%)19=1.208,(1+1%)20=1.220,(1+1%)21=1.232.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)當(dāng)時(shí), 求函數(shù)在區(qū)間上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知袋中裝有大小相同的2個(gè)白球、2個(gè)紅球和1個(gè)黃球.一項(xiàng)游戲規(guī)定:每個(gè)白球、紅球和黃球的分值分別是0分、1分和2分,每一局從袋中一次性取出三個(gè)球,將3個(gè)球?qū)?yīng)的分值相加后稱為該局的得分,計(jì)算完得分后將球放回袋中.當(dāng)出現(xiàn)第局得分()的情況就算游戲過關(guān),同時(shí)游戲結(jié)束,若四局過后仍未過關(guān),游戲也結(jié)束.

(1)求在一局游戲中得3分的概率;

(2)求游戲結(jié)束時(shí)局?jǐn)?shù)的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a0,a1.設(shè)命題p:函數(shù)yloga(x1)(0,+)內(nèi)單調(diào)遞減;命題q:曲線yx2(2a3)x1x軸交于不同的兩點(diǎn).若pq為真,pq為假,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案