【題目】在△ABC中,已知內(nèi)角AB,C所對的邊分別為a,bc,向量m=(2sin B,- ),n,且mn.

(1)求銳角B的大。

(2)如果b=2,求△ABC的面積SABC的最大值.

【答案】(1) ;(2) .

【解析】試題分析:(1)由向量共線的坐標表示,代入用二倍角公式化簡得出角B;(2)由余弦定理結合基本不等式,得到ac的最大值,代入求出三角形面積的最大值.

試題解析:

(1)因為m=(2sin B,-),n,

mn.

所以2sin B=-cos 2B

所以tan 2B=-.

又因為角B為銳角,

所以2B,即B.

(2)已知b=2,由余弦定理,得:

4=a2c2ac≥2acacac(當且僅當ac=2時等號成立).

因為△ABC的面積SABCacsin Bac,

所以△ABC的面積SABC的最大值為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l經(jīng)過直線2x+y﹣5=0與x﹣2y=0的交點,且點A(5,0)到l的距離為3,則直線l的方程為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設矩形ABCD(AB>AD)的周長為24,把△ABC沿AC向△ADC折疊,AB折過去后交DC于點P,設AB=x,求△ADP的最大面積及相應x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某單位名員工參加“我愛閱讀”活動,他們的年齡在25歲至50歲之間,按年齡分組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示.

(I)現(xiàn)要從年齡低于40歲的員工中用分層抽樣的方法抽取12人,則年齡在第組的員工人數(shù)分別是多少?

(II)為了交流讀書心得,現(xiàn)從上述人中再隨機抽取人發(fā)言,設人中年齡在的人數(shù)為,求的數(shù)學期望;

(III)為了估計該單位員工的閱讀傾向,現(xiàn)對從該單位所有員工中按性別比例抽取的40人做是否喜歡閱讀國學類書籍進行調查,調查結果如下表所示:(單位:人)

喜歡閱讀國學類

不喜歡閱讀國學類

合計

14

4

18

8

14

22

合計

22

18

40

根據(jù)表中數(shù)據(jù),我們能否有的把握認為該單位員工是否喜歡閱讀國學類書籍和性別有關系?

附:,其中

0.05

0.025

0.010

0.005

0.001

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某家具廠有方木料,五合板,準備加工成書桌和書櫥出售.已知生產(chǎn)每張書桌需要方木料,五合板,生產(chǎn)每個書櫥需要方木料,五合板,出售一張書桌可獲利潤元,出售一個書櫥可獲利潤元.

1)如果只安排生產(chǎn)書桌,可獲利潤多少?

2)如果只安排生產(chǎn)書櫥,可獲利潤多少?

3)怎樣安排生產(chǎn)可使所得利潤最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】用分期付款的方式購買某家用電器一件,價格為1 150元,購買當天先付150元,以后每月這一天還款一次,每次還款數(shù)額相同,20個月還清,月利率為1%,按復利計算.若交付150元后的第一個月開始算分期付款的第一個月,全部欠款付清后,請問買這件家電實際付款多少元?每月還款多少元?(最后結果保留4個有效數(shù)字)

參考數(shù)據(jù):(1+1%)19=1.208,(1+1%)20=1.220,(1+1%)21=1.232.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求函數(shù)的單調區(qū)間;

(Ⅱ)當時, 求函數(shù)在區(qū)間上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知袋中裝有大小相同的2個白球、2個紅球和1個黃球.一項游戲規(guī)定:每個白球、紅球和黃球的分值分別是0分、1分和2分,每一局從袋中一次性取出三個球,將3個球對應的分值相加后稱為該局的得分,計算完得分后將球放回袋中.當出現(xiàn)第局得分()的情況就算游戲過關,同時游戲結束,若四局過后仍未過關,游戲也結束.

(1)求在一局游戲中得3分的概率;

(2)求游戲結束時局數(shù)的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知a0,a1.設命題p:函數(shù)yloga(x1)(0,+)內(nèi)單調遞減;命題q:曲線yx2(2a3)x1x軸交于不同的兩點.若pq為真,pq為假,求a的取值范圍.

查看答案和解析>>

同步練習冊答案