【題目】如圖,有一塊半圓形空地,開發(fā)商計劃建一個矩形游泳池及其矩形附屬設(shè)施
,并將剩余空地進行綠化,園林局要求綠化面積應(yīng)最大化.其中半圓的圓心為
,半徑為
,矩形的一邊
在直徑上,點
、
、
、
在圓周上,
、
在邊
上,且
,設(shè)
.
(1)記游泳池及其附屬設(shè)施的占地面積為,求
的表達式;
(2)怎樣設(shè)計才能符合園林局的要求?
【答案】(1)(2)
【解析】試題分析:(1)根據(jù)直角三角形求兩個矩形的長與寬,再根據(jù)矩形面積公式可得函數(shù)解析式,最后根據(jù)實際意義確定定義域(2)利用導(dǎo)數(shù)求函數(shù)最值,求導(dǎo)解得零點,列表分析導(dǎo)函數(shù)符號變化規(guī)律,確定函數(shù)單調(diào)性,進而得函數(shù)最值
試題解析:(1)由題意,,
,且
為等邊三角形,
所以,,
,
,
.
(2)要符合園林局的要求,只要最小,
由(1)知,
令,即
,
解得或
(舍去),
令,
當(dāng)時,
是單調(diào)減函數(shù),
當(dāng)時,
是單調(diào)增函數(shù),
所以當(dāng)時,
取得最小值.
答:當(dāng)滿足
時,符合園林局要求.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列中,
,其前
項和
滿足
.
(1)求證:數(shù)列為等差數(shù)列,并求
的通項公式;
(2)設(shè) ,求數(shù)列
的前
項和
;
(3)設(shè)為非零整數(shù)
,是否存在
的值,使得對任意
恒成立,若存在求出
的值,若不存在說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,直平行六面體中,
為棱
上任意一點,
為底面
(除
外)上一點,已知
在底面
上的射影為
,若再增加一個條件,就能得到
,現(xiàn)給出以下條件:
①;②
在
上;③
平面
;④直線
和
在平面
的射影為同一條直線.其中一定能成為增加條件的是__________.(把你認為正確的都填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面有命題: ①y=|sinx﹣ |的周期是π;
②y=sinx+sin|x|的值域是[0,2];
③方程cosx=lgx有三解;
④ω為正實數(shù),y=2sinωx在 上遞增,那么ω的取值范圍是
;
⑤在y=3sin(2x+ )中,若f(x1)=f(x2)=0,則x1﹣x2必為π的整數(shù)倍;
⑥若A、B是銳角△ABC的兩個內(nèi)角,則點P(cosB﹣sinA,sinB﹣cosA在第二象限;
⑦在△ABC中,若 ,則△ABC鈍角三角形.其中真命題個數(shù)為( )
A.2
B.3
C.4
D.5
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場在店慶一周年開展“購物折上折活動”:商場內(nèi)所有商品按標價的八折出售,折后價格每滿500元再減100元.如某商品標價為1500元,則購買該商品的實際付款額為1500×0.8-200=1000(元).設(shè)購買某商品得到的實際折扣率.設(shè)某商品標價為
元,購買該商品得到的實際折扣率為
.
(Ⅰ)寫出當(dāng)時,
關(guān)于
的函數(shù)解析式,并求出購買標價為1000元商品得到的實際折扣率;
(Ⅱ)對于標價在[2500,3500]的商品,顧客購買標價為多少元的商品,可得到的實際折扣率低于?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠生產(chǎn)某產(chǎn)品的年固定成本為250萬元,每生產(chǎn)千件,需另投入成本
(萬元),若年產(chǎn)量不足
千件,
的圖像是如圖的拋物線,此時
的解集為
,且
的最小值是
,若年產(chǎn)量不小于
千件,
,每千件商品售價為50萬元,通過市場分析,該廠生產(chǎn)的商品能全部售完;
(1)寫出年利潤(萬元)關(guān)于年產(chǎn)量
(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時,該廠在這一商品的生產(chǎn)中所獲利潤最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,底面
為矩形,側(cè)面
為正三角形,且平面
平面,
為
中點,
.
(Ⅰ)求證:平面平面
;
(Ⅱ)若二面角的平面角大小
滿足
,求四棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域為R的函數(shù)f(x)= 是奇函數(shù),f(1)=﹣
.
(1)求a,b的值;
(2)判斷函數(shù)f(x)的單調(diào)性,并用定義證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com