【題目】已知曲線C1的極坐標方程為ρ2cos2θ=8,曲線C2的極坐標方程為,曲線C1、C2相交于A、B兩點.(p∈R)
(Ⅰ)求A、B兩點的極坐標;
(Ⅱ)曲線C1與直線(t為參數(shù))分別相交于M,N兩點,求線段MN的長度.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】家中配電盒至電視的線路斷了,檢測故障的算法中,第一步檢測的是( )
A. 靠近電視的一小段,開始檢查 B. 電路中點處檢查
C. 靠近配電盒的一小段,開始檢查 D. 隨機挑一段檢查
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖像兩相鄰對稱軸之間的距離是,若將的圖像先向右平移個單位,再向上平移個單位,所得函數(shù)為奇函數(shù).
(1)求的解析式;
(2)求的對稱軸及單調(diào)區(qū)間;
(3)若對任意,恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有甲、乙兩個投資項目,對甲項目投資十萬元,據(jù)對市場份樣本數(shù)據(jù)統(tǒng)計,年利潤分布如下表:
年利潤 | 萬元 | 萬元 | 萬元 |
頻數(shù) |
對乙項目投資十萬元,年利潤與產(chǎn)品質(zhì)量抽查的合格次數(shù)有關(guān),在每次抽查中,產(chǎn)品合格的概率均為,在一年之內(nèi)要進行次獨立的抽查,在這次抽查中產(chǎn)品合格的次數(shù)與對應(yīng)的利潤如下表:
合格次數(shù) | 次 | 次 | 次 |
年利潤 | 萬元 | 萬元 | 萬元 |
記隨機變量分別表示對甲、乙兩個項目各投資十萬元的年利潤.
(1)求的概率;
(2)某商人打算對甲或乙項目投資十萬元,判斷哪個項目更具有投資價值,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標平面內(nèi),以坐標原點O為極點,x軸的非負半軸為極軸建立極坐標系,已知點M的極坐標為,曲線C的參數(shù)方程為(α為參數(shù)).
(I)求直線OM的直角坐標方程;
(Ⅱ)求點M到曲線C上的點的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A,B,C表示不同的點,L表示直線,α,β表示不同的平面,則下列推理錯誤的是( )
A. A∈L,A∈α,B∈L,B∈αLα
B. A∈α,A∈β,B∈α,B∈βα∩β=AB
C. Lα,A∈LAα
D. A∈α,A∈L,LαL∩α=A
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為了解廣告投入對銷售收益的影響,在若干地區(qū)各投入萬元廣告費用,并將各地的銷售收益繪制成頻率分布直方圖(如圖所示).由于工作人員操作失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從開始計數(shù)的.
(Ⅰ)根據(jù)頻率分布直方圖計算圖中各小長方形的寬度;
(Ⅱ)估計該公司投入萬元廣告費用之后,對應(yīng)銷售收益的平均值(以各組的區(qū)間中點值代表該組的取值);
(Ⅲ)該公司按照類似的研究方法,測得另外一些數(shù)據(jù),并整理得到下表:
廣告投入x(單位:萬元) | 1 | 2 | 3 | 4 | 5 |
銷售收益y(單位:萬元) | 2 | 3 | 2 | 7 |
表中的數(shù)據(jù)顯示,與之間存在線性相關(guān)關(guān)系,請將(Ⅱ)的結(jié)果填入空白欄,并計算關(guān)于的回歸方程.
回歸直線的斜率和截距的最小二乘估計公式分別為.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com