已知動點M(x,y)到直線l:x = 4的距離是它到點N(1,0)的距離的2倍.
(1)求動點M的軌跡C的方程;
(2)過點P(0,3)的直線m與軌跡C交于A, B兩點. 若A是PB的中點, 求直線m的斜率.
(1).      (2)
(1)點M(x,y)到直線x=4的距離,是到點N(1,0)的距離的2倍,則
.
所以,動點M的軌跡為 橢圓,方程為
(2)P(0, 3), 設(shè)
橢圓,經(jīng)檢驗直線m不經(jīng)過這2點,即直線m斜率k存在。.聯(lián)立橢圓和直線方程,整理得:


所以,直線m的斜率
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的左右焦點分別為,點為短軸的一個端點,.
(1)求橢圓的方程;
(2)如圖,過右焦點,且斜率為的直線與橢圓相交于兩點,為橢圓的右頂點,直線分別交直線于點,線段的中點為,記直線的斜率為.
求證: 為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知焦點在軸上的橢圓過點,且離心率為,為橢圓的左頂點.
(1)求橢圓的標準方程;
(2)已知過點的直線與橢圓交于,兩點.
(ⅰ)若直線垂直于軸,求的大小;
(ⅱ)若直線軸不垂直,是否存在直線使得為等腰三角形?如果存在,求出直線的方程;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓與雙曲線的焦點相同,且橢圓上任意一點到兩焦點的距離之和為,那么橢圓的離心率等于(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若橢圓+=1(a>b>0)的離心率為,則雙曲線-=1的漸近線方程為(  )
A.y=±x     B.y=±2x
C.y=±4x      D.y=±x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標系xoy中,已知橢圓C1的左焦點為F1(-1,0),且點P(0,1)在C1上。
(1)求橢圓C1的方程;
(2)設(shè)直線l同時與橢圓C1和拋物線C2相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓C的方程為(m>0),如果直線y=x與橢圓的一個交點M在x軸上的射影恰好是橢圓的右焦點F,則m的值為(  )
A.2 B.2
C.8 D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓過點和點
(1)求橢圓的方程;
(2)設(shè)過點的直線與橢圓交于兩點,且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)圓錐曲線r的兩個焦點分別為,若曲線r上存在點P滿足,則曲線r的離心率等于(   )
A.
B.或2
C.或2
D.

查看答案和解析>>

同步練習(xí)冊答案