(1)已知數(shù)列{cn},其中cn=2n+3n,且數(shù)列{cn+1-pcn}為等比數(shù)列,求常數(shù)p;

(2)設(shè){an}{bn}是公比不相等的兩個等比數(shù)列,cn=an+bn,證明數(shù)列{cn}不是等比數(shù)列.

解:(1)因為{cn+1-pcn}是等比數(shù)列,故有

(cn+1-pcn)2=(cn+2-pcn+1)(cn-pcn-1).

將cn=2n+3n代入上式,得

[2n+1+3n+1-p(2n+3n)]2

=[2n+2+3n+2-p(2n+1+3n+1)]·[2n+3n-p(2n-1+3n-1)],

即[(2-p)2n+(3-p)3n2

=[(2-p)2n+1+(3-p)3n+1][(2-p)2n-1+(3-p)3n-1].

整理得(2-p)(3-p)·2n·3n=0.

解得p=2或p=3.

(2)設(shè){an}{bn}的公比分別為p、q,p≠q,cn=an+bn.

為證{cn}不是等比數(shù)列,只需證

c22≠c1·c3.

事實上,c22=(a1p+b1q)2

=a12p2+b12q2+2a1b1pq,

c1·c3=(a1+b1)(a1p2+b1q2)=a12p2+b12q2+a1b1(p2+q2),

由于p≠q,p2+q2>2pq,又a1、b1不為零,

因此c22≠c1·c3,故{cn}不是等比數(shù)列.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:044

(1)已知數(shù)列{cn},其中cn2n3n,且數(shù)列{cn1pcn}為等比數(shù)列,求常數(shù)p;

(2)設(shè){an}、{bn}是公比不相等的兩個等比數(shù)列,cnanbn,證明數(shù)列{cn}不是等比數(shù)列.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:同步題 題型:解答題

(1)已知數(shù)列{cn},其中cn=2n+3n,且數(shù)列{cn+1-pcn}為等比數(shù)列,求常數(shù)p;
(2)設(shè){an}、{bn}是公比不相等的兩個等比數(shù)列,cn=an+bn,證明數(shù)列{cn}不是等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知數(shù)列{an},其中cn=2n+3n,且數(shù)列{cn+1-pcn}為等比數(shù)列,求常數(shù)p;

(2)設(shè){an}、{bn}是公比不相等的兩個等比數(shù)列,cn=an+bn,證明數(shù)列{cn}不是等比數(shù)列.

   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知數(shù)列{cn},cn=2n+3n且數(shù)列{cn+1-pcn}為等比數(shù)列,求常數(shù)p;

(2)設(shè){an}、{bn}是公比不相等的兩個等比數(shù)列,cn=an+bn,證明{cn}不是等比數(shù)列.

查看答案和解析>>

同步練習(xí)冊答案