【題目】某沙漠地區(qū)經(jīng)過(guò)治理,生態(tài)系統(tǒng)得到很大改善,野生動(dòng)物數(shù)量有所增加.為調(diào)查該地區(qū)某種野生動(dòng)物的數(shù)量,將其分成面積相近的200個(gè)地塊,從這些地塊中用簡(jiǎn)單隨機(jī)抽樣的方法抽取20個(gè)作為樣區(qū),調(diào)查得到樣本數(shù)據(jù)(xi,yi)(i=1,2,…,20),其中xi和yi分別表示第i個(gè)樣區(qū)的植物覆蓋面積(單位:公頃)和這種野生動(dòng)物的數(shù)量,并計(jì)算得,,,,.
(1)求該地區(qū)這種野生動(dòng)物數(shù)量的估計(jì)值(這種野生動(dòng)物數(shù)量的估計(jì)值等于樣區(qū)這種野生動(dòng)物數(shù)量的平均數(shù)乘以地塊數(shù));
(2)求樣本(xi,yi)(i=1,2,…,20)的相關(guān)系數(shù)(精確到0.01);
(3)根據(jù)現(xiàn)有統(tǒng)計(jì)資料,各地塊間植物覆蓋面積差異很大.為提高樣本的代表性以獲得該地區(qū)這種野生動(dòng)物數(shù)量更準(zhǔn)確的估計(jì),請(qǐng)給出一種你認(rèn)為更合理的抽樣方法,并說(shuō)明理由.
附:相關(guān)系數(shù)r=,≈1.414.
【答案】(1);(2);(3)詳見解析
【解析】
(1)利用野生動(dòng)物數(shù)量的估計(jì)值等于樣區(qū)野生動(dòng)物平均數(shù)乘以地塊數(shù),代入數(shù)據(jù)即可;
(2)利用公式計(jì)算即可;
(3)各地塊間植物覆蓋面積差異較大,為提高樣本數(shù)據(jù)的代表性,應(yīng)采用分層抽樣.
(1)樣區(qū)野生動(dòng)物平均數(shù)為,
地塊數(shù)為200,該地區(qū)這種野生動(dòng)物的估計(jì)值為
(2)樣本(i=1,2,…,20)的相關(guān)系數(shù)為
(3)由(2)知各樣區(qū)的這種野生動(dòng)物的數(shù)量與植物覆蓋面積有很強(qiáng)的正相關(guān)性,
由于各地塊間植物覆蓋面積差異很大,從俄各地塊間這種野生動(dòng)物的數(shù)量差異很大,
采用分層抽樣的方法較好地保持了樣本結(jié)構(gòu)與總體結(jié)構(gòu)得以執(zhí)行,提高了樣本的代表性,
從而可以獲得該地區(qū)這種野生動(dòng)物數(shù)量更準(zhǔn)確的估計(jì).
【點(diǎn)晴】
本題主要考查平均數(shù)的估計(jì)值、相關(guān)系數(shù)的計(jì)算以及抽樣方法的選取,考查學(xué)生數(shù)學(xué)運(yùn)算能力,是一道容易題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某省即將實(shí)行新高考,不再實(shí)行文理分科.某校為了研究數(shù)學(xué)成績(jī)優(yōu)秀是否對(duì)選擇物理有影響,對(duì)該校2018級(jí)的1000名學(xué)生進(jìn)行調(diào)查,收集到相關(guān)數(shù)據(jù)如下:
(1)根據(jù)以上提供的信息,完成列聯(lián)表,并完善等高條形圖;
選物理 | 不選物理 | 總計(jì) | |
數(shù)學(xué)成績(jī)優(yōu)秀 | |||
數(shù)學(xué)成績(jī)不優(yōu)秀 | 260 | ||
總計(jì) | 600 | 1000 |
(2)能否在犯錯(cuò)誤的概率不超過(guò)0.05的前提下認(rèn)為數(shù)學(xué)成績(jī)優(yōu)秀與選物理有關(guān)?
附:
臨界值表:
0.10 | 0.05 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列有關(guān)線性回歸分析的四個(gè)命題:
①線性回歸直線必過(guò)樣本數(shù)據(jù)的中心點(diǎn)();
②回歸直線就是散點(diǎn)圖中經(jīng)過(guò)樣本數(shù)據(jù)點(diǎn)最多的那條直線;
③當(dāng)相關(guān)性系數(shù)時(shí),兩個(gè)變量正相關(guān);
④如果兩個(gè)變量的相關(guān)性越強(qiáng),則相關(guān)性系數(shù)就越接近于.
其中真命題的個(gè)數(shù)為( 。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《九章算術(shù)》中盈不足章中有這樣一則故事:“今有良馬與駑馬發(fā)長(zhǎng)安,至齊. 齊去長(zhǎng)安三千里. 良馬初日行一百九十三里,日增一十二里;駑馬初日行九十七里,日減二里.” 為了計(jì)算每天良馬和駑馬所走的路程之和,設(shè)計(jì)框圖如下圖. 若輸出的 的值為 350,則判斷框中可填( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙、丙三位同學(xué)進(jìn)行羽毛球比賽,約定賽制如下:累計(jì)負(fù)兩場(chǎng)者被淘汰;比賽前抽簽決定首先比賽的兩人,另一人輪空;每場(chǎng)比賽的勝者與輪空者進(jìn)行下一場(chǎng)比賽,負(fù)者下一場(chǎng)輪空,直至有一人被淘汰;當(dāng)一人被淘汰后,剩余的兩人繼續(xù)比賽,直至其中一人被淘汰,另一人最終獲勝,比賽結(jié)束.經(jīng)抽簽,甲、乙首先比賽,丙輪空.設(shè)每場(chǎng)比賽雙方獲勝的概率都為,
(1)求甲連勝四場(chǎng)的概率;
(2)求需要進(jìn)行第五場(chǎng)比賽的概率;
(3)求丙最終獲勝的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)有下列四個(gè)命題:
p1:兩兩相交且不過(guò)同一點(diǎn)的三條直線必在同一平面內(nèi).
p2:過(guò)空間中任意三點(diǎn)有且僅有一個(gè)平面.
p3:若空間兩條直線不相交,則這兩條直線平行.
p4:若直線l平面α,直線m⊥平面α,則m⊥l.
則下述命題中所有真命題的序號(hào)是__________.
①②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】十九大報(bào)告要求,確保到2020年我國(guó)現(xiàn)行標(biāo)準(zhǔn)下農(nóng)村貧困人口實(shí)現(xiàn)脫貧,貧困縣全部摘帽,解決區(qū)域性整體貧困,做到脫真貧、真脫貧.某貧困地區(qū)扶貧辦積極貫徹落實(shí)國(guó)家精準(zhǔn)扶貧的政策要求,帶領(lǐng)農(nóng)村地區(qū)人民群眾脫貧奔小康,扶貧辦計(jì)劃為某農(nóng)村地區(qū)購(gòu)買農(nóng)機(jī)機(jī)器,假設(shè)該種機(jī)器使用三年后即被淘汰.農(nóng)機(jī)機(jī)器制造商對(duì)購(gòu)買該機(jī)器的客戶推出了兩種銷售方案:
方案一:每臺(tái)機(jī)器售價(jià)7000元,三年內(nèi)可免費(fèi)保養(yǎng)2次,超過(guò)2次每次收取保養(yǎng)費(fèi)200元;
方案二:每臺(tái)機(jī)器售價(jià)7050元,三年內(nèi)可免費(fèi)保養(yǎng)3次,超過(guò)3次每次收取保養(yǎng)費(fèi)100元.
扶貧辦需要決策在購(gòu)買機(jī)器時(shí)應(yīng)該選取那種方案,為此搜集并整理了50臺(tái)這種機(jī)器在三年使用期內(nèi)保養(yǎng)的次數(shù),得下表:
保養(yǎng)次數(shù) | 0 | 1 | 2 | 3 | 4 | 5 |
臺(tái)數(shù) | 1 | 10 | 19 | 14 | 4 | 2 |
記x表示1臺(tái)機(jī)器在三年使用期內(nèi)的保養(yǎng)次數(shù).
(1)用樣本估計(jì)總體的思想,求“x不超過(guò)3”的概率;
(2)按照兩種銷售方案,分別計(jì)算這50臺(tái)機(jī)器三年使用期內(nèi)的總費(fèi)用(總費(fèi)用=售價(jià)+保養(yǎng)費(fèi)),以每臺(tái)每年的平均費(fèi)用作為決策依據(jù),扶貧辦選擇那種銷售方案購(gòu)買機(jī)器更合算?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在長(zhǎng)方體中,點(diǎn)分別在棱上,且,.
(1)證明:點(diǎn)在平面內(nèi);
(2)若,,,求二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】直線l過(guò)拋物線C:y2=4x的焦點(diǎn)F且與C交于A(x1,y1),B(x2,y2)兩點(diǎn),則y1y2=_____.過(guò)A,B兩點(diǎn)分別作拋物線C的準(zhǔn)線的垂線,垂足分別為P,Q,準(zhǔn)線與x軸的交點(diǎn)為M,四邊形FAPM的面積記為S1,四邊形FBQM的面積記為S2,則S1S2﹣3|AF||BF|=_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com