將函數(shù)f(x)的圖象沿x軸向右平移
π
3
個單位,再將橫坐標(biāo)伸長為原來的2倍(縱坐標(biāo)不變),得到的圖象所對應(yīng)的函數(shù)為y=cosx,則f(x)為( 。
A、y=cos(2x+
π
3
B、y=cos(2x-
π
3
C、y=cos(2x+
2
3
π)
D、y=cos(2x-
2
3
π)
分析:由題意函數(shù)的圖象變換,按照逐步逆推,即可得到函數(shù)的解析式,確定選項.
解答:將函數(shù)y=cosx圖象上各點的橫坐標(biāo)縮短為原來的
1
2
倍(縱坐標(biāo)不變),得到的函數(shù)解析式是y=cos2x,
再沿x軸向左平移
π
3
個單位,得到的解析式是y=cos2(x+
π
3
)=cos(2x+
3

故選C.
點評:本題是基礎(chǔ)題,考查三角函數(shù)圖象的變化原則.注意逆向思維推理能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(sin(
x
2
+
π
12
),cos
x
2
),
b
=(cos(
x
2
+
π
12
),-cos
x
2
),x∈[
π
2
,π]
,函數(shù)f(x)=
a
b

(1)若cosx=-
3
5
,求函數(shù)f(x)的值;
(2)將函數(shù)f(x)的圖象按向量
c
=(m,n)(0<m<π)平移,使得平移后的圖象關(guān)于原點對稱,求向量
c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=alnx+2x+3(a∈R)
(1)若函數(shù)f(x)在x=2處取得極值,求實數(shù)a的值;
(Ⅱ)若a=1,設(shè)g(x)=f(x)+kx,且不等式g′(x)≥0在X∈(0,2)上恒成立,求實數(shù)k的取值范圍;
(Ⅲ)在(I)的條件下,將函數(shù)f(x)的圖象關(guān)于y軸對稱得到函數(shù)φ(x)的圖象,再將函數(shù)φ(x)的圖象向右平移3個單位向下平移4個單位得到函數(shù)w(x)的圖象,試確定函數(shù)w(x)的單調(diào)性并根據(jù)單調(diào)性證明ln[2.3.4…(n+1))]2≤n(n+1)(n∈N,n>l).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三角函數(shù)f(x)=Acos(ωx+φ)+B(A>0,ω>0,|φ|<
π
2
)
的部分圖象如圖所示.
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)將函數(shù)f(x)的圖象向右平移
π
6
個單位后得到函數(shù)g(x),試求函數(shù)g(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•淄博二模)已知函數(shù)f(x)=
3
sinωx•cosωx+cos2ωx-
1
2
(ω>0)
,其最小正周期為
π
2

(I)求f(x)的表達(dá)式;
(II)將函數(shù)f(x)的圖象向右平移
π
8
個單位,再將圖象上各點的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),得到函數(shù)y=g(x)的圖象,若關(guān)于x的方程g(x)+k=0,在區(qū)間[0,
π
2
]
上有且只有一個實數(shù)解,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面向量
a
=(
2
,
2
),
b
=(sin
π
4
x,cos
π
4
x),函數(shù)f(x)=
a
b

(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)將函數(shù)f(x)的圖象上的所有的點向左平移1個單位長度,得到函數(shù)y=g(x)的圖象,若函數(shù)y=g(x)+k在(-2,4)上有兩個零點,求實數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案