已知x>0,y>0,若不等式x3+y3≥kxy(x+y)恒成立,則實數(shù)k的最大值為
 
考點:函數(shù)恒成立問題
專題:不等式的解法及應(yīng)用
分析:根據(jù)題意不等式x3+y3≥kxy(x+y)可化簡為
x
y
+
y
x
-1≥k
,由基本不等式可知k的最大值為1.
解答: 解:∵x>0,y>0,
∴不等式x3+y3≥kxy(x+y)可化為,
x2-xy+y2≥kxy,
x
y
+
y
x
-1≥k
,
由基本不等式得,
x
y
+
y
x
≥2
,
∴k≤2-1=1,
∴實數(shù)k的最大值為1,
故答案為:1.
點評:本題考查因式分解,不等式的性質(zhì)以及基本不等式的靈活應(yīng)用,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}的公差不為零,a1=1,且a1,a2,a5成等比數(shù)列.
(Ⅰ)求{an}的通項公式;
(Ⅱ)求a1+a4+a7+…+a3n-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列命題:
①已知線性回歸方程
y
=3+2x,當變量x增加2個單位,其預(yù)報值平均增加4個單位;
②在進制計算中,100(2)=11(3);
③若ξ~N(3,σ2),且P(0≤ξ≤3)=0.4,則P(ξ≥6)=0.1;
④“a=
1
0
1-x2
dx”是“函數(shù)y=cos2(ax)-sin2(ax)的最小正周期為4”的充要條件;
⑤設(shè)函數(shù)f(x)=
2014x+1+2013
2014x+1
+2014sinx(x∈[-
π
2
,
π
2
])的最大值為M,最小值為m,則M+m=4027,
其中正確命題的個數(shù)是
 
個.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=f(x)的圖象關(guān)于點(a,b)對稱的充要條件是f(a-x)+f(a+x)=2b(或f(x)+f(2a-x)=2b.如果函數(shù)y=f(x)的圖象關(guān)于點(a,b)對稱,則稱(a,b)為“中心點”,稱函數(shù)y=f(x)為“中心函數(shù)”.
①已知f(x)是定義在R上的增函數(shù),點(1,0)為函數(shù)y=f(x-1)的“中心點”,若不等式f(m2-5m+21)+f(m2-8m)<0恒成立,則3<m<3.5.
②若函數(shù)y=f(x)為R上的“中心函數(shù)”,則y=
1
f(x)
為R上的“中心函數(shù)”.
③函數(shù)y=f(x)在R上的中心點為(a,f(a)),則F(x)=f(x+a)-f(a)為R上的奇函數(shù).
④已知函數(shù)f(x)=2x-cosx為“中心函數(shù)”,數(shù)列{an}是公差為
π
8
的等差數(shù)列.若
7
n=1
f(an)=7π,則
[f(a4)]
a1a7
=
64
5

其中你認為是正確的所有命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列三個命題:①函數(shù)y=tanx在第一象限是增函數(shù);②奇函數(shù)的圖象一定過原點;③函數(shù)y=sin2x+cos2x的最小正周期為π,其中假命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若數(shù)列{an}滿足:a1=1,an+1=
1
2
an(n∈N*),則a4=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若直線ax+2y-1=0與直線2x-3y-1=0平行,則a=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

為了解某市甲、乙、丙三所學校高三數(shù)學模擬考試成績,采取分層抽樣方法,從甲校的1260份試卷、乙校的720份試卷、丙校的900份試卷中進行抽樣調(diào)研.如果從丙校的900份試卷中抽取了45份試卷,那么這次調(diào)研共抽查的試卷份數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,若
c2-a2
b2+ab
=1,則∠C的大小為( 。
A、
π
6
B、
π
3
C、
3
D、
6

查看答案和解析>>

同步練習冊答案