【題目】下列四種說法中,
①命題“存在x∈R,x2﹣x>0”的否定是“對于任意x∈R,x2﹣x<0”;
②命題“p且q為真”是“p或q為真”的必要不充分條件;
③已知冪函數(shù)f(x)=xα的圖象經(jīng)過點(2, ),則f(4)的值等于 ;
④已知向量 =(3,﹣4), =(2,1),則向量 在向量 方向上的投影是 .
說法錯誤的個數(shù)是( )
A.1
B.2
C.3
D.4
【答案】C
【解析】解:①命題“存在x∈R,x2﹣x>0”的否定是“對于任意x∈R,x2﹣x≤0”,故①不正確;
②命題“p且q為真”,則命題p、q均為真,所以“p或q為真”.反之“p或q為真”,則p、q不見得都真,所以不一定有“p且q為真”所以命題“p且q為真”是“p或q為真”的充分不必要條件,故命題②不正確;
③由冪函數(shù)f(x)=xα的圖象經(jīng)過點(2, ),所以2α= ,所以α=﹣ ,所以冪函數(shù)為f(x)= ,所以f(4)= ,所以命題③正確;
④∵向量 =(3,﹣4), =(2,1),∴ =3×2+(﹣4)×1=2,| |= ,∴向量 在向量 的方向上的投影為: = ,故④不正確.
故選:C.
【考點精析】掌握命題的真假判斷與應(yīng)用是解答本題的根本,需要知道兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關(guān)系.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lnx﹣a(x﹣1),g(x)=ex .
(1)當(dāng)a=2時,求函數(shù)f(x)的最值;
(2)當(dāng)a≠0時,過原點分別作曲線y=f(x)與y=g(x)的切線l1 , l2 , 已知兩切線的斜率互為倒數(shù),證明: <a< .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,A,B,C,D四點在同一圓上,BC與AD的延長線交于點E,點F在BA的延長線上.
(1)若 = , =1,求 的值;
(2)若EF2=FAFB,證明:EF∥CD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,圓C的方程為ρ=2acosθ(a≠0),以極點為坐標(biāo)原點,極軸為x軸正半軸建立平面直角坐標(biāo)系,設(shè)直線l的參數(shù)方程為 (t為參數(shù)).
(1)求圓C的直角坐標(biāo)方程(化為標(biāo)準(zhǔn)方程)和直線l的極坐標(biāo)方程;
(2)若直線l與圓C只有一個公共點,且a<1,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列{an}滿足a1= ,an+1=an2﹣an+1(n∈N*),則m= + +…+ 的整數(shù)部分是( )
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點A(1,﹣1),B(4,0),C(2,2),平面區(qū)域D是所有滿足 = +μ (1<λ≤a,1<μ≤b)的點P(x,y)組成的區(qū)域.若區(qū)域D的面積為8,則4a+b的最小值為 ( )
A.5
B.4
C.9
D.5+4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市戶居民的月平均用電量(單位:度),以,,,,,,分組的頻率分布直方圖如圖.
(1)求直方圖中的值;
(2)求月平均用電量的眾數(shù)和中位數(shù);
(3)在月平均用電量為,,,的四組用戶中,用分層抽樣的方法抽取戶居民,則月平均用電量在的用戶中應(yīng)抽取多少戶?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橫梁的強(qiáng)度和它的矩形橫斷面的長的平方與寬的乘積成正比,要將直徑為d的圓木鋸成強(qiáng)度最大的橫梁,則橫斷面的長和寬分別為 ( )
A. d, d B. d, d
C. d, d D. d, d
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com