9.已知一空間幾何體的三視圖如圖所示,則該幾何體的體積為4$\sqrt{3}$.

分析 由已知中的三視圖可得:該幾何體是一個(gè)以俯視圖為底面的三棱錐,代入錐體體積公式,可得答案.

解答 解:由已知中的三視圖可得:該幾何體是一個(gè)以俯視圖為底面的三棱錐,
底面面積S=$\frac{1}{2}$×2$\sqrt{3}$×3=3$\sqrt{3}$,
高h(yuǎn)=4,
故體積V=$\frac{1}{3}Sh$=4$\sqrt{3}$;
故答案為:4$\sqrt{3}$

點(diǎn)評 本題考查的知識點(diǎn)是棱柱的體積和表面積,棱錐的體積和表面積,簡單幾何體的三視圖,難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.有10道數(shù)學(xué)單項(xiàng)選擇題,每題選對得4分,不選或選錯(cuò)得0分.已知某考生能正確答對其中的7道題,余下的3道題每題能正確答對的概率為$\frac{1}{3}$.假設(shè)每題答對與否相互獨(dú)立,記ξ為該考生答對的題數(shù),η為該考生的得分,則P(ξ=9)=$\frac{2}{9}$,Eη=32(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知(x0,y0,z0)是關(guān)于x、y、z的方程組$\left\{\begin{array}{l}{ax+by+cz=0}\\{cx+ay+bz=0}\\{bx+cy+az=0}\end{array}$的解.
(1)求證:$|\begin{array}{l}{a}&&{c}\\{c}&{a}&\\&{c}&{a}\end{array}|$=(a+b+c)•$|\begin{array}{l}{a}&&{1}\\{c}&{a}&{1}\\&{c}&{1}\end{array}|$;
(2)設(shè)z0=1,a、b、c分別為△ABC三邊長,試判斷△ABC的形狀,并說明理由;
(3)設(shè)a、b、c為不全相等的實(shí)數(shù),試判斷“a+b+c=0”是“x02+y02+z02>0”的④條件,并證明:①充分非必要;②必要非充分;③充分且必要;④非充分非充要.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知命題p:“m=-1”,命題q:“直線x-y=0與直線x+m2y=0互相垂直”,則命題p是命題q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖是某企業(yè)2010年至2016年污水凈化量(單位:噸)的折線圖.

注:年份代碼1~7分別對應(yīng)年份2010~2016.
(1)由折線圖看出,可用線性回歸模型擬合y和t的關(guān)系,請用相關(guān)系數(shù)加以說明;
(2)建立y關(guān)于t的回歸方程,預(yù)測2017年該企業(yè)污水凈化量;
(3)請用數(shù)據(jù)說明回歸方程預(yù)報(bào)的效果.
附注:參考數(shù)據(jù):$\overline{y}$=54,$\sum_{i=1}^{7}$(ti-$\overline{t}$)(yi-$\overline{y}$)=21,$\sqrt{14}$≈3.74,$\sum_{i=1}^{7}$(yi-$\stackrel{∧}{{y}_{i}}$ )2=$\frac{9}{4}$.
參考公式:相關(guān)系數(shù)r=$\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sqrt{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}}$,回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}{a}$+$\stackrel{∧}$t中斜率和截距的最小二乘估計(jì)公式分別為$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{t}$.
反映回歸效果的公式為R2=1-$\frac{\sum_{i=1}^{n}({y}_{i}-\stackrel{∧}{{y}_{i}})^{2}}{\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}$,其中R2越接近于1,表示回歸的效果越好.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在某項(xiàng)測試中,測量結(jié)果X服從正態(tài)分布N(1,σ2),若P(X<0)=0.2,則P(0<X<2)=0.6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若α,β是兩個(gè)不同平面,m,n是兩條不同直線,則下列結(jié)論錯(cuò)誤的是( 。
A.如果m∥n,α∥β,那么m與α所成的角和n與β所成的角相等
B.如果m⊥n,m⊥α,n∥β,那么α⊥β
C.如果α∥β,m?α,那么m∥β
D.如果m⊥α,n∥α,那么m⊥n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=2an-3n(n∈N+).
(1)求a1,a2,a3的值;
(2)是否存在常數(shù)λ,使得{an+λ}為等比數(shù)列?若存在,求出λ的值和通項(xiàng)公式an,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.${∫}_{0}^{1}$(2x+5)(x2+5x-3)10dx等于( 。
A.0B.$\frac{{3}^{11}}{11}$C.$\frac{2×{3}^{11}}{11}$D.$\frac{{2}^{11}}{11}$

查看答案和解析>>

同步練習(xí)冊答案