【題目】若f(x)=ax2+3a是定義在[a2﹣5,a﹣1]上的偶函數(shù),令函數(shù)g(x)=f(x)+f(1﹣x),則函數(shù)g(x)的定義域?yàn)?/span> .
【答案】[0,1]
【解析】解:∵f(x)是定義在[a2﹣5,a﹣1]上的偶函數(shù),
∴ ,解得a=2,
則函數(shù)f(x)的定義域是[﹣1,1],
由 得,0≤x≤1,
∴函數(shù)g(x)的定義域是[0,1],
所以答案是:[0,1].
【考點(diǎn)精析】關(guān)于本題考查的函數(shù)的定義域及其求法和函數(shù)奇偶性的性質(zhì),需要了解求函數(shù)的定義域時(shí),一般遵循以下原則:①是整式時(shí),定義域是全體實(shí)數(shù);②是分式函數(shù)時(shí),定義域是使分母不為零的一切實(shí)數(shù);③是偶次根式時(shí),定義域是使被開方式為非負(fù)值時(shí)的實(shí)數(shù)的集合;④對(duì)數(shù)函數(shù)的真數(shù)大于零,當(dāng)對(duì)數(shù)或指數(shù)函數(shù)的底數(shù)中含變量時(shí),底數(shù)須大于零且不等于1,零(負(fù))指數(shù)冪的底數(shù)不能為零;在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個(gè)奇函數(shù)的乘除認(rèn)為奇函數(shù);偶數(shù)個(gè)奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復(fù)合函數(shù)的奇偶性:一個(gè)為偶就為偶,兩個(gè)為奇才為奇才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex+ax﹣1(e為自然對(duì)數(shù)的底數(shù)). (Ⅰ)當(dāng)a=1時(shí),求過點(diǎn)(1,f(1))處的切線與坐標(biāo)軸圍成的三角形的面積;
(Ⅱ)若f(x)≥x2在(0,1)上恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一艘船在航行過程中發(fā)現(xiàn)前方的河道上有一座圓拱橋.在正常水位時(shí),拱橋最高點(diǎn)距水面8m,拱橋內(nèi)水面寬32m,船只在水面以上部分高6.5m,船頂部寬8m,故通行無阻,如圖所示.
(1)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求正常水位時(shí)圓弧所在的圓的方程;
(2)近日水位暴漲了2m,船已經(jīng)不能通過橋洞了.船員必須加重船載,降低船身在水面以上的高度,試問:船身至少降低多少米才能通過橋洞?(精確到0.1m, )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】仙游某家具城生產(chǎn)某種家具每件成本為3萬元,每件售價(jià)為x萬元(x>3),月銷量為t件,經(jīng)驗(yàn)表明,t= +10(x﹣6)2 , 其中3<x<6,a為常數(shù).已知銷售價(jià)格為5萬元時(shí),月銷量為11件.
(1)求a的值;
(2)求售價(jià)定為多少時(shí),該家具的月利潤最大,最大值為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓中心是原點(diǎn)O,它的短軸長為 ,右焦點(diǎn)F(c,0)(c>0),它的長軸長為2a(a>c>0),直線l: 與x軸相交于點(diǎn)A,|OF|=2|FA|,過點(diǎn)A的直線與橢圓相交于P、Q兩點(diǎn).
(1)求橢圓的方程和離心率;
(2)若 ,求直線PQ的方程;
(3)設(shè) (λ>1),過點(diǎn)P且平行于直線l的直線與橢圓相交于另一點(diǎn)M,證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的不等式(kx﹣k2﹣4)(x﹣4)>0,其中k∈R;
(1)當(dāng)k=4時(shí),求上述不等式的解集;
(2)當(dāng)上述不等式的解集為(﹣5,4)時(shí),求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)P在圓O:x2+y2=8上運(yùn)動(dòng),PD⊥x軸,D為垂足,點(diǎn)M在線段PD上,滿足 .
(1)求點(diǎn)M的軌跡方程;
(2)過點(diǎn)Q(1, )作直線l與點(diǎn)M的軌跡相交于A、B兩點(diǎn),使點(diǎn)Q為弦AB的中點(diǎn),求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)=ax3+blog2(x+ )+2在(﹣∞,0)上有最小值﹣5,(a,b為常數(shù)),則函數(shù)f(x)在(0,+∞)上( )
A.有最大值5
B.有最小值5
C.有最大值3
D.有最大值9
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)定義在R上的偶函數(shù)f(x)在區(qū)間(﹣∞,0]上單調(diào)遞減,若f(1﹣m)<f(m),則實(shí)數(shù)m的取值范圍是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com