【題目】如圖所示,已知四邊形是菱形,平面平面,,.
(1)求證:平面平面.
(2)若,求二面角的余弦值.
【答案】(1)證明見解析;(2).
【解析】
(1)由面面垂直的性質定理可得平面,再由面面垂直的判定定理得平面平面;
(2)設與交于點O,連接,可證平面.以O為坐標原點,以,,所在直線分別為x軸、y軸、z軸建立空間直角坐標系,求出平面和平面的法向量,即求二面角的余弦值.
(1)證明:菱形中,,
又平面平面,平面平面,
平面.又平面,
平面平面.
(2)設與交于點O,連接,因為,且,
四邊形是平行四邊形,.
,,
又平面平面,平面平面,平面,
平面.
以O為坐標原點,以,,所在直線分別為x軸、y軸、z軸建立空間直角坐標系,如圖所示
則,,,,
,.
設平面的法向量為,
則,即,令,則,
.
又平面的法向量為.
設二面角的大小為,則為銳角.
,
二面角的余弦值為.
科目:高中數學 來源: 題型:
【題目】某市教育局為了監(jiān)控某校高一年級的素質教育過程,從該校高一年級16個班隨機抽取了16個樣本成績,制表如下:
抽取次序 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
測評成績 | 95 | 96 | 96 | 90 | 95 | 98 | 98 | 97 |
抽取次序 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
測評成績 | 97 | 95 | 96 | 98 | 99 | 96 | 99 | 96 |
令為抽取的第個學生的素質教育測評成績,,經計算得,,,,以下計算精確到0.01.
(1)求的相關系數,并回答與是否可以認為具有較強的相關性;
(2)在抽取的樣本成績中,如果出現(xiàn)了在之外的成績,就認為本學期的素質教育過程可能出現(xiàn)了異常情況,需對本學期的素質教學過程進行反思,同時對下學期的素質教育過程提出指導性的建議,從該校抽樣的結果來看,是否需對本學期的素質教學過程進行反思,同時對下學期的素質教育過程提出指導性的建議?
附:樣本的相關系數,若,則可以認為兩個變量具有較強的線性相關性.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的長軸與短軸比值是2,橢圓C過點.
(1)求橢圓C的標準方程;
(2)過點作圓x2+y2=1的切線交橢圓C于A,B兩點,記△AOB(O為坐標原點)的面積為S△AOB,將S△AOB表示為m的函數,并求S△AOB的最大值
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設點為圓上的動點,過點作軸的垂線,垂足為,動點滿足,記點的軌跡為.
(1)求曲線的方程;
(2)已知點,斜率為的直線與曲線交于不同的兩點,,且滿足,試求的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】天津市某學校組織教師進行“學習強國”知識競賽,規(guī)則為:每位參賽教師都要回答3個問題,且對這三個問題回答正確與否相互之間互不影響,若每答對1個問題,得1分;答錯,得0分,最后按照得分多少排出名次,并分一、二、三等獎分別給予獎勵.已知對給出的3個問題,教師甲答對的概率分別為,,p.若教師甲恰好答對3個問題的概率是,則________;在前述條件下,設隨機變量X表示教師甲答對題目的個數,則X的數學期望為________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著生活水平的提高和人們對健康生活的重視,越來越多的人加入到健身運動中.國家統(tǒng)計局數據顯示,2019年有4億國人經常參加體育鍛煉.某健身房從參與健身的會員中隨機抽取100人,對其每周參與健身的天數和2019年在該健身房所有消費金額(單位:元)進行統(tǒng)計,得到以下統(tǒng)計表及統(tǒng)計圖:
平均每周健身天數 | 不大于2 | 3或4 | 不少于5 |
人數(男) | 20 | 35 | 9 |
人數(女) | 10 | 20 | 6 |
若某人平均每周進行健身天數不少于5,則稱其為“健身達人”.該健身房規(guī)定消費金額不多于1600元的為普通會員,超過1600元但不超過3200元的為銀牌會員,超過3200元的為金牌會員.
(1)已知金牌會員都是健身達人,現(xiàn)從健身達人中隨機抽取2人,求他們均是金牌會員的概率;
(2)能否在犯錯誤的概率不超過的前提下認為性別和是否為“健身達人”有關系?
(3)該健身機構在2019年年底針對這100位消費者舉辦一次消費返利活動,現(xiàn)有以下兩種方案:
方案一:按分層抽樣從普通會員、銀牌會員和金牌會員中共抽取25位“幸運之星”,分別給予188元,288元,888元的幸運獎勵;
方案二:每位會員均可參加摸獎游戲,游戲規(guī)則如下:摸獎箱中裝有5張形狀大小完全一樣的卡片,其中3張印跑步機圖案、2張印動感單車圖案,有放回地摸三次卡片,每次只能摸一張,若摸到動感單車的總數為2,則獲得100元獎勵,若摸到動感單車的總數為3,則獲得200元獎勵,其他情況不給予獎勵.規(guī)定每個普通會員只能參加1次摸獎游戲,每個銀牌會員可參加2次摸獎游戲,每個金牌會員可參加3次摸獎游戲(每次摸獎結果相互獨立).
請你比較該健身房采用哪一種方案時,在此次消費返利活動中的支出較少,并說明理由.
附:,其中為樣本容量.
0.50 | 0.25 | 0.10 | 0.05 | 0.010 | 0.005 | |
0.455 | 1.323 | 2.706 | 3.841 | 6.636 | 7.879 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】企業(yè)為了監(jiān)控某種零件的一條流水生產線的產品質量,檢驗員從該生產線上隨機抽取100個零件,測量其尺寸(單位:)并經過統(tǒng)計分析,得到這100個零件的平均尺寸為10,標準差為0.5.企業(yè)規(guī)定:若,該零件為一等品,企業(yè)獲利20元;若且,該零件為二等品,企業(yè)獲利10元;否則,該零件為不合格品,企業(yè)損失40元.
(1)在某一時刻內,依次下線10個零件,如果其中出現(xiàn)了不合格品,就認為這條生產線在這一天的生產過程可能出現(xiàn)了異常情況,需對當天的生產過程進行檢查若這10個零件的尺寸分別為9.6,10.5,9.8,10.1,10.7,9.4,10.9,9.5,10,10.9,則從這一天抽檢的結果看,是否需要對當天的生產過程進行檢查?
(2)將樣本的估計近似地看作總體的估計通過檢驗發(fā)現(xiàn),該零件的尺寸服從正態(tài)分布.其中近似為樣本平均數,近似為樣本方差.
(i)從下線的零件中隨機抽取20件,設其中為合格品的個數為,求的數學期望(結果保留整數)
(ii)試估計生產10000個零件所獲得的利潤.
附:若隨機變量服從正態(tài)分布,則,,.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com