某校其中考試后,隨機抽查了高一甲、乙兩個班各10名學(xué)生的數(shù)學(xué)成績,其成績的莖葉圖如圖所示,那么甲、乙兩班這10名學(xué)生成績的中位數(shù)z、z與方差s、s之間的關(guān)系正確的是( 。
A、z>z,s>s
B、z<z,s>s
C、z>z,s<s
D、z<z,s<s
考點:莖葉圖
專題:概率與統(tǒng)計
分析:根據(jù)莖葉圖中的數(shù)據(jù),得出甲、乙的中位數(shù)以及方差的大小,即可做出正確的判斷.
解答: 解:根據(jù)莖葉圖中的數(shù)據(jù),得;
甲班10名學(xué)生成績的中位數(shù)是z=
76+76
2
=76,
乙班10名學(xué)生成績的中位數(shù)是z=
76+78
2
=77;
甲班的成績成單峰分布,且集中在中位數(shù)附近,∴方差較小些,
乙班的成績也成單峰分布,但是分散在中位數(shù)的兩側(cè),∴方差較大些;
∴z<z,s<s
故選:D.
點評:本題考查了莖葉圖的應(yīng)用問題,也考查了中位數(shù)與平均數(shù)和方差的計算與估計的問題,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

化簡:sin2x-
3
sinxcosx=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=2+log3x,x∈[1,9],則函數(shù)y=[f(x)]2+f(x 
1
2
)的值域為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從空間一點P向二面角α-l-β的兩個半平面α,β分別作垂線PE,PF,垂足分別為E,F(xiàn),若二面角α-l-β的大小為60°,則<
PF
,
PE
>的大小為( 。
A、30°或150°
B、120°
C、60°或120°
D、60°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>b,ab≠0,則下列不等式①a2>b2,②2a>2b,③
1
a
1
b
,④(
1
3
)
a
(
1
3
)
b
中恒成立的有
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,∠BAC=90°,P為△ABC所在平面外一點,且PA=PB=PC,證明:平面PBC⊥平面ABC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex-x2,若?x∈[1,2],不等式-m≤f(x)≤m2-4恒成立,則實數(shù)m的取值范圍是( 。
A、(-∞,1-e]
B、[1-e,e]
C、[-e,e+1]
D、[e,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng)x>0時,函數(shù)f(x)=(a-1)x的值總大于1,則實數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,G為△ABC的重心,D在邊AC上,且
CD
=3
DA
,若
GD
=x
AB
+y
AC
,則x-y=
 

查看答案和解析>>

同步練習(xí)冊答案