已知函數(shù),若的最大值為1.
(1)求的值,并求的單調(diào)遞增區(qū)間;
(2)在中,角、、的對邊、、,若,且,試判斷三角形的形狀.
(1)1,;(2)直角三角形.
解析試題分析:(1)求三角函數(shù)周期、對稱軸、單調(diào)區(qū)間、最值等問題,通常將所給函數(shù)轉(zhuǎn)化為形式再求解;(2)由求出角B,將利用正弦定理化為角的關(guān)系式,求出角的值。
試題解析:(1) ,.
令,得單調(diào)增區(qū)間為
(2)因?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/be/8/q5xkg.png" style="vertical-align:middle;" />,則,
又,則,
得,得,所以,所以,故為直角三角形.
考點(diǎn):單調(diào)性,化為形式,正弦定理.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù) 的圖象過點(diǎn)(0, ),最小正周期為 ,且最小值為-1.
(1)求函數(shù)的解析式.
(2)若 ,的值域是 ,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知,其中
(1)求函數(shù)的最小正周期,并從下列的變換中選擇一組合適變換的序號,經(jīng)過這組變換的排序,可以把函數(shù)的圖像變成的圖像;(要求變換的先后順序)
①縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉淼?img src="http://thumb.1010pic.com/pic5/tikupic/e8/b/1ihla4.png" style="vertical-align:middle;" />倍,
②縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉淼?倍,
③橫坐標(biāo)不變,縱坐標(biāo)變?yōu)樵瓉淼?img src="http://thumb.1010pic.com/pic5/tikupic/8f/9/1bzla2.png" style="vertical-align:middle;" />倍,
④橫坐標(biāo)不變,縱坐標(biāo)變?yōu)樵瓉淼?img src="http://thumb.1010pic.com/pic5/tikupic/fb/3/inxms1.png" style="vertical-align:middle;" />倍,
⑤向上平移一個單位,
⑥向下平移一個單位,
⑦向左平移個單位,
⑧向右平移個單位,
⑨向左平移個單位,
⑩向右平移個單位,
(2)在中角對應(yīng)邊分別為,,求的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知向量,設(shè)函數(shù).
求的最小正周期與單調(diào)遞增區(qū)間;
在中,分別是角的對邊,若,,的面積為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知向量,,且的最小正周期為
(Ⅰ)求的值;
(Ⅱ)若,解方程;
(Ⅲ)在中,,,且為銳角,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com