已知數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233832509481.png)
的首項
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233832524456.png)
的等比數(shù)列,其前
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233832556297.png)
項和
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233832571388.png)
中
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233832587616.png)
,
(1)求數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233832509481.png)
的通項公式;
(2)設
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233832665715.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233832680998.png)
,求證:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233832696692.png)
(Ⅰ)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233832727919.png)
;(Ⅱ)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233832743658.png)
本試題主要是考查了數(shù)列的通項公式與數(shù)列求和的綜合運用。
(1)根據(jù)題意確定q不為1,然后
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233832758367.png)
時,由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232338327901343.png)
得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233832821168.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233832836859.png)
,得到通項公式。
(2)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232338328681123.png)
,利用裂項求和得到結(jié)論。
解:(Ⅰ)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233832899346.png)
,則
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233832914706.png)
不符合題意,∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233832758367.png)
,
當
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233832758367.png)
時,由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232338327901343.png)
得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233832821168.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233832836859.png)
∴
(Ⅱ)∵
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232338328681123.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233833226331.png)
=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233833258898.png)
=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232338332731146.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232338333041096.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233833351456.png)
是遞增數(shù)列.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233833382849.png)
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:單選題
等差數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234408362494.png)
的首項
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234408377371.png)
,公差
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234408409450.png)
,如果
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234408424505.png)
成等比數(shù)列,那么
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234408440326.png)
等于( )
A.3 | B.2 | C.-2 | D.![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234408471312.png) |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
已知等差數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234054672480.png)
的首項
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234054703493.png)
前
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234054719297.png)
項和記為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234054890715.png)
,求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234054719297.png)
取何值時,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234054937376.png)
取得最大值,并求出最大值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233950618457.png)
的前
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233950649297.png)
項和記為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233950665388.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233950680405.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233950696970.png)
.
(I)當
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233950727267.png)
為何值時,數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233950618457.png)
是等比數(shù)列?
(II)在(I)的條件下,若等差數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233950790476.png)
的前
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233950649297.png)
項和
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233950821373.png)
有最大值,且
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233950852467.png)
,又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233950883459.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233950899480.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233950914491.png)
成等比數(shù)列,求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233950946374.png)
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
已知正項等差數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233650407481.png)
的前
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233650485297.png)
項和為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233650500388.png)
,若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233650578507.png)
,且
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233650594600.png)
成等比數(shù)列.
(1)求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233650407481.png)
的通項公式;
(2)記
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233650656597.png)
的前
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233650485297.png)
項和為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233650750373.png)
,求證
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233650781556.png)
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知數(shù)列{a
n}的前n項和
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233208358594.png)
,那么它的通項公式為a
n=_________
查看答案和解析>>