圓過雙曲線=1的一個(gè)頂點(diǎn)和一個(gè)焦點(diǎn),圓心在雙曲線上,則圓心到雙曲線中心的距離為________.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:中學(xué)教材標(biāo)準(zhǔn)學(xué)案 數(shù)學(xué) 高二上冊(cè) 題型:013

雙曲線=1的一條準(zhǔn)線與兩條漸近線交于A、B兩點(diǎn),相應(yīng)的焦點(diǎn)F,若以AB為直徑的圓過F點(diǎn),則雙曲線離率為

[  ]

A.
B.
C.2
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:天驕之路中學(xué)系列 讀想用 高二數(shù)學(xué)(上) 題型:044

已知雙曲線關(guān)于兩坐標(biāo)軸對(duì)稱,且與圓x2+y2=10相交于點(diǎn)P(3,-1),若此圓過點(diǎn)P的切線與雙曲線的一條漸近線平行,求此雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年普通高等學(xué)校招生全國(guó)統(tǒng)一考試上海卷理科數(shù)學(xué) 題型:044

在平面直角坐標(biāo)系xOy中,已知雙曲線C1:2x2-y2=1.

(1)過C1的左頂點(diǎn)引C1的一條漸進(jìn)線的平行線,求該直線與另一條漸進(jìn)線及x軸圍成的三角形的面積;

(2)設(shè)斜率為1的直線l交C1于P、Q兩點(diǎn),若l與圓x2+y2=1相切,求證:OP⊥OQ;

(3)設(shè)橢圓C2:4x2+y2=1,若M、N分別是C1、C2上的動(dòng)點(diǎn),且OM⊥ON,求證:O到直線MN的距離是定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以下四個(gè)關(guān)于圓錐曲線的命題中:①設(shè)A、B為兩個(gè)定點(diǎn),k為非零常數(shù),若| |-| |=k,則動(dòng)點(diǎn)P的軌跡為雙曲線;②過定圓C上一定點(diǎn)A作圓的動(dòng)弦AB,O為坐標(biāo)原點(diǎn),若(),則動(dòng)點(diǎn)P的軌跡為橢圓;③方程2x2-5x+2=0的兩根可分別作為橢圓和雙曲線的離心率;④雙曲線=1與橢圓+y2=1有相同的焦點(diǎn).

其中真命題的序號(hào)為   (寫出所有真命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆山東省濟(jì)寧市高二10月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分12分)在平面直角坐標(biāo)系xOy中,已知雙曲線C1:2x2-y2=1.

(1)過C1的左頂點(diǎn)引C1的一條漸近線的平行線,求該直線與另一條漸近線及x軸圍成的三角形的面積;

(2)設(shè)斜率為1的直線l交C1于P、Q兩點(diǎn).若l與圓x2+y2=1相切,求證:OP⊥OQ;

 

查看答案和解析>>

同步練習(xí)冊(cè)答案