精英家教網 > 高中數學 > 題目詳情
已知數列{an}的前n項和為Sn(n∈N*),點(an,Sn)在直線y=2x-3n上.
(Ⅰ)求證:數列{an+3}是等比數列;
(Ⅱ)求數列{an}的通項公式;
(Ⅲ)數列{an}中是否存在成等差數列的三項?若存在,求出一組合適條件的三項;若不存在,說明理由.
分析:(Ⅰ)由“點(an,Sn)在直線y=2x-3n上.”可得Sn=2an-3n,由通項和前n項和關系可得an+1=2an+3,變形為an+1+3=2(an+3)符合等比數列的定義.
(Ⅱ)由(I)根據等比數列通項公式求解有an+3=b•2n-1=3•2n整理可得an=3•2n-3
(Ⅲ)先假設存在s、p、r∈N*且s<p<r使as,ap,ar成等差數列根據等差中項有2ap=as+ar,再用通項公式展開整理有2p-s+1=1+2r-s∵因為s、p、r∈N*且s<p<r所以2p-s+1為偶數,1+2r-s為奇數,奇數與偶數不會相等的.所以不存在.
解答:解:(Ⅰ)由題意知Sn=2an-3n
∴an+1=Sn+1-Sn=2an+1-3(n+1)-2an+3n∴an+1=2an+3(2分)
∴an+1+3=2(an+3)
an+1+3
an+3
=2
,又a1=S1=2a1-3a1=3
∴a1+3=6(4分)
∴數列{an+3}成以6為首項以2為公比的等比數列
(Ⅱ)由(I)得an+3=b•2n-1=3•2n
∴an=3•2n-3
(Ⅲ)設存在s、p、r∈N*且s<p<r使as,ap,ar成等差數列
∴2ap=as+ar∴2(3•2p-3)=3•2s-3+3•2r-3∴2p+1=2s+2r(9分)
即2p-s+1=1+2r-s(*)
∵s、p、r∈N*且s<p<r
∴2p-s+1為偶數,1+2r-s為奇數
∴(*)為矛盾等式,不成立故這樣的三項不存在(12分)
點評:本題主要考查數列與函數的綜合運用,主要涉及了通項與前n項和的關系,構造等比數列,求通項,等差中項及數域問題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

19、已知數列{an}的前n項和Sn=n2(n∈N*),數列{bn}為等比數列,且滿足b1=a1,2b3=b4
(1)求數列{an},{bn}的通項公式;
(2)求數列{anbn}的前n項和.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}的前n項和Sn=an2+bn(a、b∈R),且S25=100,則a12+a14等于( 。
A、16B、8C、4D、不確定

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}的前n項和Sn=n2+n+1,那么它的通項公式為an=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

13、已知數列{an}的前n項和為Sn=3n+a,若{an}為等比數列,則實數a的值為
-1

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}的前n項和Sn滿足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通項公式an
(2)求Sn

查看答案和解析>>

同步練習冊答案