如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=900。
求證:PC⊥BC;
求點A到平面PBC的距離。
(1)見解析(2).
【解析】本試題主要考查了立體幾何中的點線面的位置關(guān)系的綜合運用。線線垂直的判定和點到面的距離的求解。
(1)證明:因為PD⊥平面ABCD,BC平面ABCD,所以PD⊥BC。
由∠BCD=900,得CD⊥BC,
又PDDC=D,PD、DC平面PCD,
所以BC⊥平面PCD。 因為PC平面PCD,故PC⊥BC。
(2)(方法一)分別取AB、PC的中點E、F,連DE、DF,則:
易證DE∥CB,DE∥平面PBC,點D、E到平面PBC的距離相等。
又點A到平面PBC的距離等于E到平面PBC的距離的2倍。
由(1)知:BC⊥平面PCD,所以平面PBC⊥平面PCD于PC,
因為PD=DC,PF=FC,所以DF⊥PC,所以DF⊥平面PBC于F。
易知DF=,故點A到平面PBC的距離等于。
(方法二)體積法:連結(jié)AC。設(shè)點A到平面PBC的距離為h。
因為AB∥DC,∠BCD=900,所以∠ABC=900。
從而AB=2,BC=1,得的面積。
由PD⊥平面ABCD及PD=1,得三棱錐P-ABC的體積。
因為PD⊥平面ABCD,DC平面ABCD,所以PD⊥DC。
又PD=DC=1,所以。由PC⊥BC,BC=1,得的面積。
由,,得h=, 故點A到平面PBC的距離等于。
科目:高中數(shù)學(xué) 來源: 題型:
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com