已知三次函數(shù)f(x)=ax3+bx2+cx+d的圖象如圖所示,則
f′(-3)
f′(1)
=( 。
A、-1B、2C、-5D、-3
考點(diǎn):函數(shù)在某點(diǎn)取得極值的條件,導(dǎo)數(shù)的運(yùn)算
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:根據(jù)函數(shù)導(dǎo)數(shù)和極值之間的關(guān)系,求出對應(yīng)a,b,c的關(guān)系,即可得到結(jié)論.
解答: 解:由三次函數(shù)的圖象可知,x=2函數(shù)的極大值,x=-1是極小值,
即2,-1是f′(x)=0的兩個根,
∵f(x)=ax3+bx2+cx+d,
∴f′(x)=3ax2+2bx+c,
由f′(x)=3ax2+2bx+c=0,
得2+(-1)=
-2b
3a
=1,
-1×2=
c
3a
=-2,
即c=-6a,2b=-3a,
即f′(x)=3ax2+2bx+c=3ax2-3ax-6a=3a(x-2)(x+1),
f′(-3)
f′(1)
=
3a(-3-2)(-3+1)
3a(1-2)(1+1)
=
-5×(-2)
-2
=-5,
故選:C
點(diǎn)評:本題主要考查函數(shù)的極值和導(dǎo)數(shù)之間的關(guān)系,以及根與系數(shù)之間的關(guān)系的應(yīng)用,考查學(xué)生的計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

命題“正三角形的三邊相等”的否定為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若lg2x-(lg2+lg3)lgx+lg2•lg3=0,則x1+x2=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若全集U={1,2,3,4,5,6},M={2,3},N={1,4},則(∁UM)∩(∁UN)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過拋物線C:x2=2y的焦點(diǎn)F的直線l交拋物線C于A、B兩點(diǎn),若拋物線C在點(diǎn)B處的切線斜率為1,則線段|AF|
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若集合A={0,1},B={-1,a2},則“a=1”是“A∩B={1}”的( 。
A、充分非必要條件
B、必要非充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中A,B,C的對邊分別是a,b,c,面積S=
a2+b2-c2
4
,則C的大小是(  )
A、30°B、45°
C、90°D、135°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tanα=-
4
3
,且α是第二象限角,那么sin(π+α)的值是(  )
A、-
4
5
B、
4
5
C、-
3
5
D、
3
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=
(x+1)0
|x|-x
的定義域是( 。
A、(-∞,-1)
B、(-1,0)
C、(-1,1)
D、(-∞,-1)∪(-1,0)

查看答案和解析>>

同步練習(xí)冊答案