春節(jié)期間,某商場(chǎng)進(jìn)行促銷活動(dòng),方案是:顧客每買滿200元可按以下方式摸球兌獎(jiǎng):箱內(nèi)裝有標(biāo)著數(shù)字20,40,60,80,1 00的小球各兩個(gè),顧客從箱子里任取三個(gè)小球,按三個(gè)小球中最大數(shù)字等額返還現(xiàn)金(單位:元),每個(gè)小球被取到的可能性相等.
(Ⅰ)若有三位顧客各買了268元的商品,求至少有二個(gè)返獎(jiǎng)不少于80元的概率;
(Ⅱ)在(Ⅰ)的條件下,設(shè)返獎(jiǎng)不少于80元的人數(shù)為ξ,求ξ的數(shù)學(xué)期望.
考點(diǎn):離散型隨機(jī)變量的期望與方差,相互獨(dú)立事件的概率乘法公式
專題:應(yīng)用題,概率與統(tǒng)計(jì)
分析:(Ⅰ)求出每位顧客返獎(jiǎng)不少于80元的概率,再求至少有二個(gè)返獎(jiǎng)不少于80元的概率;
(Ⅱ)返獎(jiǎng)不少于80元的人數(shù)ξ~B(3,
5
6
),利用公式可求ξ的數(shù)學(xué)期望.
解答: 解:(Ⅰ)設(shè)“返獎(jiǎng)80元”為事件A,“返獎(jiǎng)100元”為事件B,則
P(A)=
C
2
6
C
1
2
+
C
1
6
C
2
2
C
3
10
=
3
10
,P(B)=
C
2
8
C
1
2
+
C
1
8
C
2
2
C
3
10
=
8
15
,
故每位顧客返獎(jiǎng)不少于80元的概率P=P(A)+P(B)=
5
6

∴至少有二個(gè)返獎(jiǎng)不少于80元的概率為
C
2
3
•(
5
6
)2
1
6
+(
5
6
)3
=
25
27
;
(Ⅱ)返獎(jiǎng)不少于80元的人數(shù)ξ~B(3,
5
6
),Eξ=3×
5
6
=
5
2
點(diǎn)評(píng):本題考查互斥事件概率的計(jì)算,考查二項(xiàng)分布,考查數(shù)學(xué)期望,正確運(yùn)用公式是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sin(2x+
π
6
)要得到g(x)=sin2x的圖象,只需將f(x)圖象( 。
A、向左平移
π
6
個(gè)單位
B、向右平移
π
6
個(gè)單位
C、向左平移
π
12
個(gè)單位
D、向右平移
π
12
個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)據(jù)-2,-1,2,5,6的方差是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)拋物線y2=2px(p>0)的焦點(diǎn)F的直線l交拋物線于A,B兩點(diǎn),交準(zhǔn)線于點(diǎn)C若
CB
=2
BF
,則直線AB的斜率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某高校自主招生考試中,所有去面試的考生全部參加了“語(yǔ)言表達(dá)能力”和“競(jìng)爭(zhēng)與團(tuán)隊(duì)意識(shí)”兩個(gè)科目的測(cè)試,成績(jī)分別為A、B、C、D、E五個(gè)等級(jí),某考場(chǎng)考生的兩科測(cè)試成績(jī)數(shù)據(jù)統(tǒng)計(jì)如圖,其中“語(yǔ)言表達(dá)能力”成績(jī)等級(jí)為B的考生有10人.
(Ⅰ)求該考場(chǎng)考生中“競(jìng)爭(zhēng)與團(tuán)隊(duì)意識(shí)”科目成績(jī)等級(jí)為A的人數(shù);
(Ⅱ)已知等級(jí)A、B、C、D、E分別對(duì)應(yīng)5分,4分,3分,2分,1分.
(i)求該考場(chǎng)學(xué)生“語(yǔ)言表達(dá)能力”科目的平均分;
(ii)求該考場(chǎng)共有10人得分大于7分,其中有2人10分,2人9分,6人8分,從這10人中隨機(jī)抽取2人,求2人成績(jī)之和的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(a+2x+3x2)(1+x)5的展開(kāi)式中一次項(xiàng)的系數(shù)為-3,則x5的系數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C所對(duì)的邊分別是a,b,c且2cos
3
cos(
π
3
-A)-cosA=
1
2

(Ⅰ)求角A的值;
(Ⅱ)若a=
13
,△ABC的面積為3
3
,求sinB+sinC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=4cosωx•sin(ωx+
π
4
)(ω>0)的最小正周期為π.
(1)討論f(x)在區(qū)間[0,
π
2
]上的單調(diào)性;
(2)若在△ABC滿足f(A+
π
8
)=
2
-1(0<A<
π
2
),面積S=5
3
,邊長(zhǎng)b=5,求sinBsinC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)t∈R,[t]表示不超過(guò)t的最大整數(shù).則在平面直角坐標(biāo)系xOy中,滿足[x]2+[y]2=13的點(diǎn)P(x,y)所圍成的圖形的面積為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案