在四棱錐P -ABCD中,底面是邊長(zhǎng)為2的菱形,∠DAB=60°,對(duì)角線AC與BD交于點(diǎn)O,PO⊥平面ABCD,PB與平面ABCD所成角為60°.
(1)求四棱錐的體積.
(2)若E是PB的中點(diǎn),求異面直線DE與PA所成角的余弦值.
(1)2 (2)
【解析】(1)在四棱錐P-ABCD中,
∵PO⊥平面ABCD,
∴∠PBO是PB與平面ABCD所成的角,
即∠PBO=60°.
在Rt△POB中,
∵BO=AB·sin30°=1,
又PO⊥OB,
∴PO=BO·tan60°=,
∵底面菱形的面積S菱形ABCD=2.
∴四棱錐P -ABCD的體積
VP -ABCD=×2×=2.
(2)取AB的中點(diǎn)F,連接EF,DF,
∵E為PB中點(diǎn),
∴EF∥PA.
∴∠DEF為異面直線DE與PA所成角(或補(bǔ)角).
在Rt△AOB中,
AO=AB·cos30°==OP,
∴在Rt△POA中,PA=,
∴EF=.
∵四邊形ABCD為菱形,且∠DAB=60°,
∴△ABD為正三角形.
又∵∠PBO=60°,BO=1,
∴PB=2,∴PB=PD=BD,即△PBD為正三角形,
∴DF=DE=,
∴cos∠DEF=
===.
即異面直線DE與PA所成角的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)(二)第一章第二節(jié)練習(xí)卷(解析版) 題型:選擇題
已知向量a=(1,2),b=(2,3),則λ<-4是向量m=λa+b與向量n=(3,-1)夾角為鈍角的( )
(A)充分而不必要條件 (B)必要而不充分條件
(C)充要條件 (D)既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)(七)第二章第四節(jié)練習(xí)卷(解析版) 題型:填空題
設(shè)定義在R上的函數(shù)f(x)同時(shí)滿足以下條件:①f(x)+f(-x)=0;②f(x)=f(x+2);③當(dāng)0≤x≤1時(shí),f(x)=2x-1,則f()+f(1)+f()+f(2)+f()
= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)(一)第一章第一節(jié)練習(xí)卷(解析版) 題型:填空題
已知A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},B≠?,且B⊆A,則m的取值范圍是___________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)(一)第一章第一節(jié)練習(xí)卷(解析版) 題型:選擇題
設(shè)全集U=R,A={x|y=},B={y|y=2x,x∈R},則A∪B=( )
(A){x|x≥0} (B){x|0<x≤1}
(C){x|1<x≤2} (D){x|x>2}
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)四十四第七章第三節(jié)練習(xí)卷(解析版) 題型:選擇題
如圖,正三棱柱ABC-A1B1C1的各棱長(zhǎng)(包括底面邊長(zhǎng))都是2,E,F分別是AB,A1C1的中點(diǎn),則EF與側(cè)棱C1C所成的角的余弦值是( )
(A) (B) (C) (D)2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)四十四第七章第三節(jié)練習(xí)卷(解析版) 題型:選擇題
如圖是正方體或四面體,P,Q,R,S分別是所在棱的中點(diǎn),這四個(gè)點(diǎn)不共面的一個(gè)圖是( )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)四十六第七章第五節(jié)練習(xí)卷(解析版) 題型:選擇題
對(duì)于直線m,n和平面α,β,α⊥β的一個(gè)充分條件是( )
(A)m⊥n,m∥α,n∥β (B)m⊥n,α∩β=m,n?α
(C)m∥n,n⊥β,m?α (D)m∥n,m⊥α,n⊥β
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)四十二第七章第一節(jié)練習(xí)卷(解析版) 題型:選擇題
如圖,△ABC為正三角形,AA'∥BB'∥CC',CC'⊥平面ABC且3AA'=BB'=CC'=AB,則多面體ABC-A'B'C'的正視圖是( )
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com